Daily Archives: March 16, 2015

Climate Models are Not Reality, but Mere Representations

Climate Models are just that, models. They are not reality but mere representations. Further, a model output is not data (physical measurements). Lastly, all models of a physical phenomena lack correspondence because one physical system (electrons) has been substituted for another. There is simply no way around these facts.

Consequently, arguments between researchers over data, models, and model estimates (e.g. here) are to be expected given the complex nature of the global climate system.

The ultimate test of a scientific  hypothesis, claim, or assertion in any field is how well it stands up to the scrutiny of those who hold a different point of view.  Good policy decision-makers understand this and so they welcome opportunities to observe a good exchange of ideas between scientists (without the personal attacks).

Threats, platitudes and posturing (e.g. here and here) really have no place whatsoever in a climate discussion nor in responsible policy decision-making.

The paper by Monckton et al 2015 (here) is standing up very well and looks to represent the best available peer-reviewed science on the topic addressed by the paper. 

Enteric Bacteria in the Nile, Egypt

AbdelRahim KA, Hassanein AM, Abd El Azeiz HA. Prevalence, plasmids and antibiotic resistance correlation of enteric bacteria in different drinking water resources in sohag, egypt. Jundishapur Journal of Microbiology. 2015 Jan 23;8(1):e18648. doi: 10.5812/jjm.18648.

BACKGROUND: One of the major health causing problems is contamination of drinking water sources with human pathogenic bacteria. Enteric bacteria such as Shigella, Salmonella and Escherichia coli are most enteric bacteria causing serious health problems. Occurrence of such bacteria infection, which may resist antibiotics, increases the seriousness of problem.

OBJECTIVES: The aim of this study was to examine the prevalence of some enteric bacteria (Shigella, Salmonella and E. coli) in addition to Pseudomonas. The antibiotic susceptibility of these bacteria was also tested, in addition to assessing plasmid(s) roles in supposed resistance. MRSA genes in non-staphylococci were clarified.

MATERIALS AND METHODS: Water samples were collected from different drinking sources (Nile, ground water) and treated tap water. Selective media were used to isolate enteric bacteria and Pseudomonas. These bacteria were identified, counted and examined for its susceptibility against 10 antibiotics. The plasmids were screened in these strains. MRSA genes were also examined using PCR.

RESULTS: Thirty-two bacterial strains were isolated from Nile and ground water and identified as S. flexneri, S. sonnei, S. serovar Newport, Pseudomonas aeruginosa and E. coli strains according to standard methods. According to antibiotic susceptibility test, 81% of strains were resistant to Cefepime, whereas 93.75% were sensitive to Ciprofloxacin. Correlation analysis between plasmids profiles and antibiotics sensitivities showed that 50% of the total strains had plasmids. These strains showed resistance to 50% of the used antibiotics (as average value); whereas, the plasmids free strains (50%) were resistant to 48.7% of the antibiotics. No distinct correlation between plasmids and antibiotic resistance in some strains could be concluded in this study. No MRSA gene was detected among these non-staphylococci strains. No bacteria were isolated from treated tap water.

CONCLUSIONS: Thirty-three bacterial strains; 10 strains of E. coli, 10 strains of S. flexneri, 3 strains S. sonnei, 2 strains of S. serovar Newport, and 7 strains of P. aeruginosa, were isolated and identified from Nile water and ground water in Sohag governorate. The prevalence of enteric bacteria in water sources in studying area was considerable. No clear or distinct correlation could be concluded between plasmids and antibiotic resistance. No MRSA gene was detected in these non-staphylococci strains, and no pathogenic bacteria were isolated from treated tap water. The hygiene procedures in the studying area seem to be adequate, despite the failure to maintain water sources form sewage pollution.

Effective Water Treatment Eliminates Waterborne Pathogen Risk

Jacob P, Henry A, Meheut G, Charni-Ben-Tabassi N, Ingrand V, Helmi K. Health Risk Assessment Related to Waterborne Pathogens from the River to the Tap. International Journal of Environmental Research and Public Health. 2015 Mar 10;12(3):2967-2983.

A two-year monitoring program of Cryptosporidium parvum oocysts, Giardia duodenalis cysts, Escherichia coli, Clostridium perfringens spores and adenovirus was conducted in three large rivers in France used for recreational activities and as a resource for drinking water production. Fifty-liter river water and one thousand-liter tap water samples were concentrated using hollow-fiber ultrafiltration and analyzed by molecular biology or laser-scanning cytometry. In order to evaluate watershed land use influence on microorganism concentration changes, occurrence and seasonality of microorganisms were studied. The highest concentrations of protozoan parasites and C. perfringens were found for one of the three sites, showing a high proportion of agricultural territories, forests and semi-natural environments, which may be partly attributable to soil leaching due to rainfall events. On the contrary, the highest concentrations of adenoviruses were found at the two other sites, probably due to strong urban activities. Health risk assessment was evaluated for each waterborne pathogen regarding exposure during recreational activities (for a single or five bathing events during the summer). The calculated risk was lower than 0.5% for parasites and varied from 1% to 42% for adenovirus. A theoretical assessment of microorganism removal during the drinking water treatment process was also performed, and it showed that an absence of microorganisms could be expected in finished drinking water. This hypothesis was confirmed since all tested tap water samples were negative for each studied microorganism, resulting in a risk for drinking water consumption lower than 0.01% for parasites and lower than 0.5% for adenovirus.

Paper is here (Open Access).

Pre-Ozonation Reduces Cyanobacteria

Zamyadi A, Coral LA, Barbeau B, Dorner S, Lapolli FR, Prévost M. Fate of toxic cyanobacterial genera from natural bloom events during ozonation. Water Res. 2015 Feb 4;73C:204-215. doi: 10.1016/j.watres.2015.01.029.

Intense accumulation of toxic cyanobacteria cells inside plants, unsuccessful removal of cells and consequent breakthrough of cells and toxins into treated water have been increasingly documented. Removal or destabilisation of cells in the pre-treatment stage using pre-ozonation could be an efficient practice as ozonation has been proven to be effective for the removal of cells and toxins. However, several unknowns including the ozone demand, the potential release of cell-bound toxins and organic matter and their impact on treatment train needs to be addressed. The general objective of this work was to study the impact of direct ozonation on different potentially toxic cyanobacteria genera from natural blooms. Water samples from five cyanobacterial bloom events in Lake Champlain (Canada) were ozonated using 2-5 mg/L O3 for a contact time of maximum 10 min. Cyanobacterial taxonomic enumeration, cyanotoxins, organic matter and post-chlorination disinfection by-product formation potential analyses were conducted on all samples. Anabaena, Aphanizomenon, Microcystis and Pseudanabaena were detected in bloom water samples. Total cell numbers varied between 197,000 and 1,282,000 cells/mL prior to ozonation. Direct ozonation lysed (reduction in total cell numbers) 41%-80% of cells and reduced released toxins to below detection limits. Microcystis was the genus the least affected by ozonation. However, DOC releases of 0.6-3.5 mg/L were observed leading to maximum 86.92 μg/L and 61.56 μg/L additional total THMs (four trihalomethanes) and HAA6 (six haloacetic acids) formation, respectively. The results of this study demonstrate that vigilant application of pre-ozonation under certain treatment conditions would help to avoid extreme toxic cells accumulation within water treatment plants.