Daily Archives: June 9, 2015

High Fluoride and Reproductive Disorders

Yin S, Song C, Wu H, Chen X, Zhang Y. Adverse Effects of High Concentrations of Fluoride on Characteristics of the Ovary and Mature Oocyte of Mouse. PLoS One. 2015 Jun 8;10(6):e0129594. doi: 10.1371/journal.pone.0129594.

Reproductive toxicity has been an exciting topic of research in reproductive biology in recent years. Soluble fluoride salts are toxic at high concentrations; their reproductive toxicity was assessed in this study by administering different fluoride salt concentrations to mice. Continuous feeding for five weeks resulted in damage to the histological architecture of ovaries. The expression of genes, including Dazl, Stra8, Nobox, Sohlh1, and ZP3 gene, associated with oocyte formation were much lower in the experimental group as compared with the control group. The number of in vitro fertilization of mature oocytes were also much lower in the experimental group as compared with control. Moreover, the fertility of female mice, as assessed by mating with normal male mice, was also lower in experimental compared with control groups. The expression of the oocyte-specific genes: Bmp15, Gdf9, H1oo, and ZP2, which are involved in oocyte growth and the induction of the acrosome reaction, decreased with the fluoride administration. DNA methylation and histone acetylation (H3K18ac and H3K9ac) are indispensable for germline development and genomic imprinting in mammals, and fluoride administration resulted in reduced levels of H3K9ac and H3K18ac in the experimental group as compared with the control group, as detected by immunostaining. Our results indicate that the administration of high concentrations of fluoride to female mice significantly reduced the number of mature oocytes and hampered their development and fertilization. Thus, this study lays a foundation for future studies on fluoride-induced reproductive disorders in women.

Arsenic Removal by Iron Coagulation

Cui J, Jing C, Che D, Zhang J, Duan S. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study. Journal of Environmental Sciences (China). 2015 Jun 1;32:42-53. doi: 10.1016/j.jes.2014.10.020.

Elevated arsenic (As) in groundwater poses a great threat to human health. Coagulation using mono- and poly-Fe salts is becoming one of the most cost-effective processes for groundwater As removal. However, a limitation comes from insufficient understanding of the As removal mechanism from groundwater matrices in the coagulation process, which is critical for groundwater treatment and residual solid disposal. Here, we overcame this hurdle by utilizing microscopic techniques to explore molecular As surface complexes on the freshly formed Fe flocs and compared ferric(III) sulfate (FS) and polyferric sulfate (PFS) performance, and finally provided a practical solution in As-geogenic areas. FS and PFS exhibited a similar As removal efficiency in coagulation and coagulation/filtration in a two-bucket system using 5mg/L Ca(ClO)2. By using the two-bucket system combining coagulation and sand filtration, 500L of As-safe water (<10μg/L) was achieved during five treatment cycles by washing the sand layer after each cycle. Fe k-edge X-ray absorption near-edge structure (XANES) and As k-edge extended X-ray absorption fine structure (EXAFS) analysis of the solid residue indicated that As formed a bidentate binuclear complex on ferrihydrite, with no observation of scorodite or poorly-crystalline ferric arsenate. Such a stable surface complex is beneficial for As immobilization in the solid residue, as confirmed by the achievement of much lower leachate As (0.9μg/L-0.487mg/L) than the US EPA regulatory limit (5mg/L). Finally, PFS is superior to FS because of its lower dose, much lower solid residue, and lower cost for As-safe drinking water.