Daily Archives: January 7, 2016

Ms. Clinton’s State Department Avoids FOIA by Lying

When government agencies want to avoid a Freedom of Information Act (FOIA) request they will do anything. Even lie.

“The term of art for how the State Department handled information requests pertaining to Hillary Clinton’s email is “inaccurate and incomplete response,” but that means lying in plain old English. “ click here

Phosphate Removal by GFH Adsorption

Zhao B, Zhang Y, Dou X, Yuan H, Yang M. Granular ferric hydroxide adsorbent for phosphate removal: demonstration preparation and field study. Water Science and Technology 2015;72(12):2179-86. doi: 10.2166/wst.2015.438.

Ferric hydroxide (FHO), which has high phosphate adsorption capacity, was prepared by precipitation at industrial scale and then fabricated via the drum granulation method with cross-linked poly(vinyl alcohol) as the binder. The optimum binder/FHO powder ratio was 0.6 for producing a granular adsorbent with a high phosphate adsorption capacity and stability. The Langmuir maximum adsorption capacities of powder and granular FHOs were 74.07 mg g(-1) and 56.18 mg g(-1) at pH 7.0 ± 0.2, respectively, which were higher than those of other reported phosphate adsorbents under neutral or acidic conditions. Phosphate-loaded granular FHO could be regenerated by NaOH solution. Columns containing the granular FHO were used for phosphate removal from ozonated secondary effluents of a municipal wastewater treatment plant at space velocity (SV) of 2 and 5 h(-1). During more than 2 months’ operation, the average removal percentage of PO4(3-) was more than 90% and the turbidity and concentration of CODMn in the effluents were lower than in the influents. In addition, energy dispersive X-ray results suggested that active sites inside the granular FHO were available for phosphate removal. The results demonstrated that granular FHO can be applied as an assist technology for phosphate removal from secondary effluents.

Comparison of Fecal Indicator Test for Monitoring the Three Gorges Reservoir

Wang Z, Xiao G, Zhou N, Qi W, Han L, Ruan Y, Guo D, Zhou H. Comparison of two methods for detection of fecal indicator bacteria used in water quality monitoring of the Three Gorges Reservoir. Journal of Environmental Sciences (China) 2015 Dec;38:42-51. doi: 10.1016/j.jes.2015.04.029. Epub 2015 Aug 21.

Scientifically sound methods to rapidly measure fecal indicator bacteria are important to ensure safe water for drinking and recreational purposes. A total of 200 water samples obtained from the Three Gorges Reservoir during three successive one-year study periods (October 2009 to September 2012) were analyzed using multiple-tube fermentation (MTF) and most probable numbers combined with polymerase chain reaction (MPN-PCR). The MPN-PCR method was found to be significantly more sensitive than the MTF method for detecting Escherichia coli and Enterococcus spp., and of equal sensitivity for detecting total coliforms when all surface water samples were grouped together. The two analytical methods had a strong, significant relationship, but MPN-PCR took only 12-18hr, compared with the 3-8days needed using the MTF method. Bacterial concentrations varied per sampling site but were significantly lower in the mainstream of the Yangtze River than those in the backwater areas of tributaries. The water quality of 85.8% of water samples from the mainstream was suitable for use as a centralized potablewater source, while the water quality of 52.5% of water samples from the backwater areas was unsuitable for recreational activities. Relationships between fecal indicator bacteria showed significant correlation (r=0.636-0.909, p<0.01, n=200), while a weak but significant correlation was found between fecal indicators and water turbidity, water temperature, daily inflow, and total dissolved solids (r=0.237-0.532, p<0.05, n=200). The study indicated that MPN-PCR is a rapid and easily performed deoxyribonucleic acid (DNA)-based method for quantitative detection of viable total coliforms, E. coli, and Enterococcus spp. in surface water.

Children Should Use “Pea-Sized” Amount of Dentifrice

Strittholt CA, McMillan DA, He T, Baker RA, Barker ML. A Randomized Clinical Study to Assess Ingestion of Dentifrice by Children. Regulatory toxicology and pharmacology 2015 Dec 22. pii: S0273-2300(15)30143-4. doi: 10.1016/j.yrtph.2015.12.008.

This study investigated whether there was a difference in amounts of dentifrice ingested by children based on age using pea-sized instructions. The study had a randomized, single-blinded, 3-period, crossover design modelled after Barnhart et al. (1974) with one regular-flavored and two specially-flavored dentifrices used ad libitum. Subjects were enrolled in three groups: 2-4, 5-7, and 8-12 years. They were instructed to brush at home as they would normally with each dentifrice for 3 weeks (9 weeks total). On weekly study-site visits, subjects brushed with the assigned dentifrice containing a lithium marker to measure the amount of dentifrice ingested and used. Averaging across dentifrices, amounts ingested were: 0.205g (2-4yr), 0.125g (5-7yr) and 0.135g (8-12yr), demonstrating 2-4 year-olds ingested significantly more than older children (p≤0.002). Averaging across dentifrices, amounts used were: 0.524g (2-4yr), 0.741g (5-7yr) and 0.978g (8-12yr) suggesting an age-related effect (p<0.01). Findings also showed that ingestion amount for specially-flavored dentifrices may increase relative to regular-flavored dentifrice for children 2-7 years-old. This research demonstrated that dentifrice ingestion amount decreased significantly with age while usage amount increased with age. Importantly, ingestion and usage levels in younger children reflect “pea-sized” direction and were numerically lower than historical levels reported prior to this direction.