Monthly Archives: July 2016

Skeletal and Dental Fluorosis in Rural Ethiopian Children

Kebede A, Retta N, Abuye C, Whiting SJ, Kassaw M, Zeru T, Tessema M, Kjellevold M. Dietary Fluoride Intake and Associated Skeletal and Dental Fluorosis in School Age Children in Rural Ethiopian Rift Valley. International journal of environmental research and public health. 2016 Jul 26;13(8). pii: E756. doi: 10.3390/ijerph13080756.

An observational study was conducted to determine dietary fluoride intake, diet, and prevalence of dental and skeletal fluorosis of school age children in three fluorosis endemic districts of the Ethiopian Rift Valley having similar concentrations of fluoride (F) in drinking water (~5 mg F/L). The duplicate plate method was used to collect foods consumed by children over 24 h from 20 households in each community (n = 60) and the foods, along with water and beverages, were analyzed for fluoride (F) content. Prevalence of dental and skeletal fluorosis was determined using presence of clinical symptoms in children (n = 220). Daily dietary fluoride intake was at or above tolerable upper intake level (UL) of 10 mg F/day and the dietary sources (water, prepared food and beverages) all contributed to the daily fluoride burden. Urinary fluoride in children from Fentale and Adamitulu was almost twice (>5 mg/L) the concentration found in urine from children from Alaba, where rain water harvesting was most common. Severe and moderate dental fluorosis was found in Alaba and Adamitulu, the highest severity and prevalence being in the latter district where staple foods were lowest in calcium. Children in all three areas showed evidence of both skeletal and non-skeletal fluorosis. Our data support the hypothesis that intake of calcium rich foods in addition to using rain water for household consumption and preparation of food, may help in reducing risk of fluorosis in Ethiopia, but prospective studies are needed.

Emerging Contaminants in Brazil Drinking and Source Waters

Machado KC, Grassi MT, Vidal C, Pescara IC, Jardim WF, Fernandes AN, Sodré FF, Almeida FV, Santana JS, Canela MC, Nunes CR, Bichinho KM, Severo FJ. A preliminary nationwide survey of the presence of emerging contaminants in drinking and source waters in Brazil. The Science of the total environment. 2016 Aug 2;572:138-146. doi: 10.1016/j.scitotenv.2016.07.210.

This is the first nationwide survey of emerging contaminants in Brazilian waters. One hundred drinking water samples were investigated in 22 Brazilian state capitals. In addition, seven source water samples from two of the most populous regions of the country were evaluated. Samples were collected from June to September of 2011 and again during the same period in 2012. The study covered emerging contaminants of different classes, including hormones, plasticizers, herbicides, triclosan and caffeine. The analytical method for the determination of the compounds was based on solid-phase extraction followed by analysis via liquid chromatography electrospray triple-quadrupole mass spectrometry (LC-MS/MS). Caffeine, triclosan, atrazine, phenolphthalein and bisphenol A were found in at least one of the samples collected in the two sampling campaigns. Caffeine and atrazine were the most frequently detected substances in both drinking and source water. Caffeine concentrations in drinking water ranged from 1.8ngL-1 to values above 2.0μgL-1 while source-water concentrations varied from 40ngL-1 to about 19μgL-1. For atrazine, concentrations were found in the range from 2.0 to 6.0ngL-1 in drinking water and at concentrations of up to 15ngL-1 in source water. The widespread presence of caffeine in samples of treated water is an indication of the presence of domestic sewage in the source water, considering that caffeine is a compound of anthropogenic origin.

Factors Influencing Bacterial Diversity in Municipal Drinking Waters, Ohio

Stanish LF, Hull NM, Robertson CE, Harris JK, Stevens MJ, Spear JR, et al. (2016) Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA. PLoS ONE 11(6): e0157966. doi:10.1371/journal.pone.0157966

The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria), MLE1-12 (phylum Cyanobacteria), Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources.


Arsenic Removal Using Reverse Osmosis

Schmidt SA, Gukelberger E, Hermann M, Fiedler F, Großmann B, Hoinkis J, Ghosh A, Chatterjee D, Bundschuh J. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system-Towards sustainable drinking water production. J Hazard Mater. 2016 Jun 11;318:671-678. doi: 10.1016/j.jhazmat.2016.06.005. 

Arsenic contamination of groundwater is posing a serious challenge to drinking water supplies on a global scale. In India and Bangladesh, arsenic has caused the most serious public health issue in the world for nearly two decades. The aim of this work was to study an arsenic removal system based on reverse osmosis at pilot scale treating two different water sources from two different locations in the State of Bihar, India. For this purpose two villages, Bind Toli and Ramnagar in the Patna District were selected, both located very close to the river Ganga. The trials were conducted with aerated and non-aerated groundwater. It is the first time that the arsenic removal efficiency for aerated and non-aerated groundwater by reverse osmosis technology in combination with an energy-saving recovery system have been studied. As the principle of reverse osmosis requires a relatively high pressure, its energy demand is naturally high. By using an energy recovery system, this demand can be lowered, leading to an energy demand per liter permeate of 3-4Wh/L only. Due to high iron levels in the groundwater and as a consequence the precipitation of ferric (hydr)oxides, it was necessary to develop a granular media filter for the trials under aeration in order to protect the membrane from clogging. Two different materials, first locally available sand, and second commercially available anthracite were tested in the granular media filter. For the trials with aerated groundwater, total arsenic removal efficiency at both locations was around 99% and the arsenic concentration in permeate was in compliance with the WHO and National Indian Standard of 10μg/L. However, trials under anoxic conditions with non-aerated groundwater could not comply with this standard. Additionally a possible safe discharge of the reverse osmosis concentrate into an abandoned well was studied. It was observed that re-injection of reject water underground may offer a safe disposal option. However, long-term hydrogeological studies need to be conducted for confirmation.

Antibiotic Resistance and Virulence Genes in Coliform Water Isolates

Stange C, Sidhu JP, Tiehm A, Toze S. Antibiotic resistance and virulence genes in coliform water isolates. International journal of hygiene and environmental health. 2016 Jul 26. pii: S1438-4639(16)30185-7. doi: 10.1016/j.ijheh.2016.07.015.

Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes blaTEM, blaSHV, ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment.

Fluoride Varnish Intervention Promotes Oral Health, Qatar

Hendaus MA, Jama HA, Siddiqui FJ, Elsiddig SA, Alhammadi AH. Parental preference for fluoride varnish: a new concept in a rapidly developing nation. Patient Prefer Adherence. 2016 Jul 13;10:1227-33. doi: 10.2147/PPA.S109269.

OBJECTIVE: The objective of this study was to investigate parental preference for fluoride varnish in a country where the average percentage of dental caries in young children is up to ~73%. Consequently, the aim of this study, despite being a pilot, was to create a nationwide project in the State of Qatar to promote oral health in children.

METHODS: A cross-sectional perspective study was conducted at Hamad Medical Corporation in Qatar. Parents of children aged ≤5 years were offered an interview survey. A total of 200 questionnaires were completed (response rate =100%). The study was conducted between December 1, 2014 and March 30, 2015, and included all children aged >1 year and 90% of families were aware that dental health affects the health of the whole body. The study showed that ~70% of parents were not aware of the existence of fluoride varnish, but would allow a health provider to apply fluoride varnish. Furthermore, ~80% of parents would not stop brushing their child’s teeth and would not skip dentist appointments if varnish was to be applied. Approximately 40% of parents conveyed some concerns regarding the safety of fluoride varnish, despite being considered as a new concept. The main concern was that the child might swallow some of the fluoride. Another important concern expressed by parents was the availability of the fluoride varnish in all clinics.

CONCLUSION: The robust positive attitude of parents in this sample suggests that introducing fluoride varnish is feasible and acceptable in our community. Actions to augment fluoride varnish acceptability in the developing world, such as focusing on safety, could be important in the disseminated implementation of fluoride varnish.

Lime Softening Effective for Strontium Removal

O’Donnell AJ, Lytle DA, Harmon S, Vu K, Chait H, Dionysiou DD. Removal of strontium from drinking water by conventional treatment and lime softening in bench-scale studies. Water Research. 2016 Jun 21;103:319-333. doi: 10.1016/j.watres.2016.06.036.

The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. Very limited data is available on strontium removal from drinking water and as a result, there is an immediate need for treatment information. The objective of this work is to evaluate the effectiveness of coagulation/filtration and lime-soda ash softening treatment methods to remove strontium from surface and ground waters. Coagulation/filtration jar test results on natural waters showed that conventional treatment with aluminum and iron coagulants were able to achieve only 12% and 5.9% strontium removal, while lime softening removed as high as 78% from natural strontium-containing ground water. Controlled batch experiments on synthetic water showed that strontium removal during the lime-soda ash softening was affected by pH, calcium concentration and dissolved inorganic carbon concentration. In all softening jar tests, the final strontium concentration was directly related to the initial strontium concentration and the removal of strontium was directly associated with calcium removal. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium was likely incorporated in the calcium carbonate crystal lattice and was likely responsible for removal during lime softening.