Evaluating bias in lead sampling, Flint, Michigan

Sampling for lead in drinking is easier said than done. There are scientific and technical issues that complicate sampling and interpretation of testing results. It is important to understand that the purpose of sampling for lead under the USEPA lead rule is not exposure assessment. The primary goal is to confirm whether or not the water system is practicing optimal corrosion control. Seems to me that we are at a critical juncture in regulating lead in drinking water and some innovative thinking is needed to develop and move forward with a regulatory approach that will be effective in reducing lead exposure.

Goovaerts P. Monitoring the aftermath of Flint drinking water contamination crisis: Another case of sampling bias? Sci Total Environ. 2017 Mar 2. pii: S0048-9697(17)30440-0. doi: 10.1016/j.scitotenv.2017.02.183.

The delay in reporting high levels of lead in Flint drinking water, following the city’s switch to the Flint River as its water supply, was partially caused by the biased selection of sampling sites away from the lead pipe network. Since Flint returned to its pre-crisis source of drinking water, the State has been monitoring water lead levels (WLL) at selected “sentinel” sites. In a first phase that lasted two months, 739 residences were sampled, most of them bi-weekly, to determine the general health of the distribution system and to track temporal changes in lead levels. During the same period, water samples were also collected through a voluntary program whereby concerned citizens received free testing kits and conducted sampling on their own. State officials relied on the former data to demonstrate the steady improvement in water quality. A recent analysis of data collected by voluntary sampling revealed, however, an opposite trend with lead levels increasing over time. This paper looks at potential sampling bias to explain such differences. Although houses with higher WLL were more likely to be sampled repeatedly, voluntary sampling turned out to reproduce fairly well the main characteristics (i.e. presence of lead service lines (LSL), construction year) of Flint housing stock. State-controlled sampling was less representative; e.g., sentinel sites with LSL were mostly built between 1935 and 1950 in lower poverty areas, which might hamper our ability to disentangle the effects of LSL and premise plumbing (lead fixtures and pipes present within old houses) on WLL. Also, there was no sentinel site with LSL in two of the most impoverished wards, including where the percentage of children with elevated blood lead levels tripled following the switch in water supply. Correcting for sampling bias narrowed the gap between sampling programs, yet overall temporal trends are still opposite.

Comments are closed.