Global Warming Rates Tied to Ocean Surface Temperature Changes

Shuai-Lei Yao, Jing-Jia Luo, Gang Huang & Pengfei Wang. Distinct global warming rates tied to multiple ocean surface temperature changesNature Climate Change (2017) doi:10.1038/nclimate3304

The globally averaged surface temperature has shown distinct multi-decadal fluctuations since 1900, characterized by two weak slowdowns in the mid-twentieth century and early twenty-first century and two strong accelerations in the early and late twentieth century. While the recent global warming (GW) hiatus has been particularly ascribed to the eastern Pacific cooling, causes of the cooling in the mid-twentieth century and distinct intensity differences between the slowdowns and accelerations remain unclear. Here, our model experiments with multiple ocean sea surface temperature (SST) forcing reveal that, although the Pacific SSTs play essential roles in the GW rates, SST changes in other basins also exert vital influences. The mid-twentieth-century cooling results from the SST cooling in the tropical Pacific and Atlantic, which is partly offset by the Southern Ocean warming. During the recent hiatus, the tropical Pacific-induced strong cooling is largely compensated by warming effects of other oceans. In contrast, during the acceleration periods, ubiquitous SST warming across all the oceans acts jointly to exaggerate the GW. Multi-model simulations with separated radiative forcing suggest diverse causes of the SST changes in multiple oceans during the GW acceleration and slowdown periods. Our results highlight the importance of multiple oceans on the multi-decadal GW rates.

Comments are closed.