Monthly Archives: September 2017

Carbon Dioxide Fertilizing Vegetation Growth Globally

Zaichun Zhu, Shilong Piao, Ranga B. Myneni, Mengtian Huang, Zhenzhong Zeng Joseph G. Canadell, Philippe Ciais, Stephen Sitch, Pierre Friedlingstein, Almut Arneth, Chunxiang Cao, Lei Cheng, Etsushi Kato, Charles Koven, Yue Li,
Xu Lian, Yongwen Liu, Ronggao Liu, Jiafu Mao, Yaozhong Pan, Shushi Peng, Josep Peñuelas, Benjamin Poulter, Thomas A. M. Pugh, Benjamin D. Stocker, Nicolas Viovy, Xuhui Wang, Yingping WangZhiqiang Xiao, Hui Yang, Sönke Zaehle and Ning Zeng. Greening of the Earth and its drivers. Nature Climate Change. 6:791-796. August 2016.

Global environmental change is rapidly altering the dynamics of terrestrial vegetation, with consequences for the functioning of the Earth system and provision of ecosystem servicesYet how global vegetation is responding to the changing environment is not well established. Here we use three long-term satellite leaf area index (LAI) records and ten global ecosystem models to investigate four key drivers of LAI trends during 19822009. We show a persistent and widespread increase of growing season integrated LAI (greening) over 25% to 50% of the global vegetated area, whereas less than 4% of the globe shows decreasing LAI (browning). Factorial simulations with multiple global ecosystem models suggest that CO2 fertilization effects explain 70% of the observed greening trend, followed by nitrogen deposition (9%), climate change (8%) and land cover change (LCC) (4%). COfertilization effects explain most of the greening trends
in the tropics, whereas climate change resulted in greening of the high latitudes and the Tibetan Plateau. LCC contributed most to the regional greening observed in southeast China and the eastern United States. The regional effects of unexplained factors suggest that the next generation of ecosystem models will need to explore the impacts of forest demographydifferences in regional management intensities for cropland and pastures, and other emerging productivity constraints such as phosphorus availability.

Nature Rights Movement a Threat to Human Survival

“The movement has now made the pages of the New York Times in a friendly story about a lawyer and an environmentalist group seeking to represent the Colorado River in a lawsuit.” click here

Facts about the West Bank “Occupation”

“In fact, the presence of Israel and Israeli Jews in Judea/Samaria (“West Bank”) and the old city of Jerusalem is not an “Israeli occupation.”   ” click here

Bromide in Drinking Water Sources, Pennsylvania

Good KD, Vanbriesen JM. Power plant bromide discharges and downstream drinking water systems in Pennsylvania. Environmental science and technology. 2017 Sep 25. doi: 10.1021/acs.est.7b03003.

Coal-fired power plants operating wet flue gas desulfurization (FGD) have recently been implicated in increasing bromide levels in drinking water sources, which affect formation of disinfection by-products. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and considers the population served by these systems, providing context for the potential extent of the effects of coal-fired power plant discharges on downstream drinking water plants and consumers of publicly-supplied drinking water. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August flow conditions in receiving rivers, the median bromide concentration contributions at intake locations ranged from 5.2 to 62 µg/L for the Base scenario (including only natural bromide in coal) and 16 to 190 µg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.

Taste Detection and Acceptability for Chlorine Residual, Bangladesh

Crider Y, Sultana S, Unicomb L, Davis J, Luby SP, Pickering AJ. Can you taste it? Taste detection and acceptability thresholds for chlorine residual in drinking water in Dhaka, Bangladesh. The Science of the total environment. 2017 Sep 20;613-614:840-846. doi: 10.1016/j.scitotenv.2017.09.135.

Chlorination is a low-cost, effective method for drinking water treatment, but aversion to the taste or smell of chlorinated water can limit use of chlorine treatment products. Forced choice triangle tests were used to evaluate chlorine detection and acceptability thresholds for two common types of chlorine among adults in Dhaka, Bangladesh, where previous studies have found low sustained uptake of chlorine water treatment products. The median detection threshold was 0.70 mg/L (n=25, SD=0.57) for water dosed with liquid sodium hypochlorite (NaOCl) and 0.73mg/L (n=25, SD=0.83) for water dosed with solid sodium dichloroisocyanurate (NaDCC). Median acceptability thresholds (based on user report) were 1.16 mg/L (SD=0.70) for NaOCl and 1.26mg/L (SD=0.67) for NaDCC. There was no significant difference in detection or acceptability thresholds for dosing with NaOCl versus NaDCC. Although users are willing to accept treated water in which they can detect the taste of chlorine, their acceptability limit is well below the 2.0mg/L that chlorine water treatment products are often designed to dose. For some settings, reducing dose may increase adoption of chlorinated water while still providing effective disinfection.

The Frequency of Minnesota Days Above 80F has Decreased

Source: The Deplorable Climate Science Blog

Economic Assessment of Cryptosporidiosis Outbreak, Ireland

Chyzheuskaya A, Srivinas R, O’Donovan D, Prendergast M, O’Donoghue C, Morris D. Economic Assessment of Waterborne Outbreak of Cryptosporidiosis. Emerging infectious diseases. 2017 Oct;23(10):1650-1656. doi: 10.3201/eid2310.152037.

In 2007, a waterborne outbreak of Cryptosporidium hominis infection occurred in western Ireland, resulting in 242 laboratory-confirmed cases and an uncertain number of unconfirmed cases. A boil water notice was in place for 158 days that affected 120,432 persons residing in the area, businesses, visitors, and commuters. This outbreak represented the largest outbreak of cryptosporidiosis in Ireland. The purpose of this study was to evaluate the cost of this outbreak. We adopted a societal perspective in estimating costs associated with the outbreak. Economic cost estimated was based on totaling direct and indirect costs incurred by public and private agencies. The cost of the outbreak was estimated based on 2007 figures. We estimate that the cost of the outbreak was >€19 million (≈€120,000/day of the outbreak). The US dollar equivalent based on today’s exchange rates would be $22.44 million (≈$142,000/day of the outbreak). This study highlights the economic need for a safe drinking water supply.