Monthly Archives: January 2018

Key Constitutional Issues Included in State of the Union Address

“Article II, Section 3 of the Constitution requires that the president share his thoughts on the current state of the Union, though it can either be delivered personally or sent as a written document. Discharging his constitutional duty in a primetime nationwide address that has received high marks, President Trump raised at least five constitutional issues, each of which is important to his political base. ” click here and here

Expect Renewables to Increase Energy Prices (in some cases to unaffordable levels).

“The one thing we know for sure is that even though sunlight and moving air is free, there is no country on Earth with lots of solar and wind power and cheap electricity.” click here

Increased Carbon Dioxide Makes Climate Less Extreme

“Over the past century, as CO2 has increased in the atmosphere, the frequency of hot days in the US has plummeted.” click here

Modern Warming and Past Cooling Correlate with Solar Activity

M.Oliva et al. The Little Ice Age in Iberian mountains. Earth-Science Reviews, 177 (2018), pp.175-208.

The Little Ice Age (LIA) is known as one of the coldest stages of the Holocene. Most records from the Northern Hemisphere show evidence of significantly colder conditions during the LIA, which in some cases had substantial socio-economic consequences. In this study we investigated the magnitude and timing of climate variability during the LIA in the mountains of the Iberian Peninsula, based on a wide range of natural records (including from glacial, periglacial, and lacustrine/peatland areas; fluvial/alluvial deposits; speleothems; and tree rings), historical documents, and early instrument data. The onset of the LIA commenced in approximately CE 1300, and cold conditions with alternating moisture regimes persisted until approximately CE 1850; the environmental responses ranged from rapid (e.g. tree rings) to delayed (e.g. glaciers). The colder climate of the LIA was accompanied by severe droughts, floods, and cold/heat waves that showed significant spatio-temporal variation across the Iberian mountains. Several phases within the LIA have been detected, including (a) 1300–1480: increasing cooling with moderate climate oscillations; (b) 1480–1570: relatively warmer conditions; (c) 1570–1620: gradual cooling; (d) 1620–1715: coldest climate period of the LIA, particularly during the Maunder Minimum, with temperatures approximately 2 °C below those at present; (e) 1715–1760: warmer temperatures and a low frequency of extreme events; (f) 1760–1800: climate deterioration and more climate extremes (i.e. cold and heat waves, floods and droughts); (g) 1800–1850: highly variable climate conditions alternating with stability (1800–1815), extreme events (1815–1835), and a slight trend of warming associated with intense hydrometeorological events (1835–1850); (h) since 1850: a gradual staggered increase in temperature of approximately 1 °C. Post-LIA warming has led to substantial changes in geo-ecological dynamics, mainly through shrinking of the spatial domain affected by cold climate processes.

Drinking water contamination with Helicobacter pylori, Peru

Boehnke KF, Brewster RK, Sánchez BN, Valdivieso M, Bussalleu A, Guevara M, Saenz CG, Alva SO, Gil E, Xi C. An assessment of drinking water contamination with Helicobacter pylori in Lima, Peru. Helicobacter. 2018 Jan 8. doi: 10.1111/hel.12462.

BACKGROUND: Helicobacter pylori is a gut bacterium that is the primary cause of gastric cancer. H. pylori infection has been consistently associated with lack of access to sanitation and clean drinking water. In this study, we conducted time-series sampling of drinking water in Lima, Peru, to examine trends of H. pylori contamination and other water characteristics.

MATERIALS AND METHODS: Drinking water samples were collected from a single faucet in Lima’s Lince district 5 days per week from June 2015 to May 2016, and pH, temperature, free available chlorine, and conductivity were measured. Quantities of H. pylori in all water samples were measured using quantitative polymerase chain reaction. Relationships between the presence/absence and quantity of H. pylori and water characteristics in the 2015-2016 period were examined using regression methods accounting for the time-series design.

RESULTS: Forty-nine of 241 (20.3%) of drinking water samples were contaminated with H. pylori. Statistical analyses identified no associations between sampling date and the likelihood of contamination with H. pylori. Statistically significant relationships were found between lower temperatures and a lower likelihood of the presence of H. pylori (P < .05), as well as between higher pH and higher quantities of H. pylori (P < .05).

CONCLUSIONS: This study has provided evidence of the presence of H. pylori DNA in the drinking water of a single drinking water faucet in the Lince district of Lima. However, no seasonal trends were observed. Further studies are needed to determine the presence of H. pylori in other drinking water sources in other districts in Lima, as well as to determine the viability of H. pylori in these water sources. Such studies would potentially allow for better understanding and estimates of the risk of infection due to exposure to H. pylori in drinking water.

Mn and Al deposits in drinking water distribution systems

Li G, Ding Y, Xu H, Jin J, Shi B. Characterization and release profile of (Mn, Al)-bearing deposits in drinking water distribution systems. Chemosphere. 2018 Jan 9;197:73-80. doi: 10.1016/j.chemosphere.2018.01.027.

Inorganic contaminants accumulation in drinking water distribution systems (DWDS) is a great threat to 2 without well crystalline form. The relative abundance of Mn and Fe in deposits changed with their distance from the water treatment plant. Compared with iron in corrosion scales, Mn and Al were more labile to be released back into bulk water during unidirectional flushing process. A main finding of this work is the co-release behavior of Mn and Al in particulate form and significant correlation exists between these two metals. Dual control of manganese and aluminum in treated water is proposed to be essential to cope with discoloration and trace metal contamination in DWDS.

Affordable Ceramic Filter Matrix for Water Treatment

Shivaraju HP, Egumbo H, Madhusudan P, Kumar KMA, Midhun G. Preparation of Affordable and Multi-functional Clay-based Ceramic Filter Matrix for Treatment of Drinking Water. Environmental technology. 2018 Jan 18:1-30. doi: 10.1080/09593330.2018.1430853.

In the present study, affordable clay-based ceramic filters with multi-functional properties were prepared using low-cost and active ingredients. The characterization results of as-prepared materials clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with typical gravity slow sand filter. All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than typical slow sand filter. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by clay-based ceramic filter with 25 and 30 % activated carbon (AC) along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5 %), nitrate (80.5 %), total dissolved solids (62 %), total hardness (55 %), total organic pollutants (89 %), and pathogenic microorganisms (100 %) using ceramic filters within short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm3g-1), surface area (124.61 m2g-1), stability and presence of active nanoparticles such as Cu, TiO2, and Ag within porous matrix of ceramic filter. The low cost clay-based ceramic filter was found to be easily reusable, handy, durable, and effective for the treatment of drinking water at household level.