Monthly Archives: March 2018

Wind turbines have serious negative effects on wildlife and habitat

“If human well-being and life satisfaction is seriously compromised by the nearby presence of a wind turbine, imagine the physiological effects on birds, bats, and land-dwelling mammals in general. Six new papers expose the systematic destruction of natural wildlife habitats via the installation of wind turbines.” click here

Northern Jet Stream within Normal Variability Range

Andrew D. Jensen, Mirseid G. Akperov, Igor I. Mokhov, Anthony R. Lupo, Orcid and Fengpeng Sun. The Dynamic Character of Northern Hemisphere Flow Regimes in a Near-Term Climate Change Projection. Atmosphere 2018, 9(1), 27; doi:10.3390/atmos9010027

The dynamic character of an enstrophy-based diagnostic, previously used in the study of atmospheric blocking, is examined here, in near-term future simulations from the Institut Pierre Simon Laplace Climate Model version 4 (IPSL-CM4) and version 5 (IPSL-CM5) climate models of the Northern Hemisphere flow for moderate climate change scenarios. Previous research has shown that integrated regional enstrophy (IE) increases during blocking onset and decay, which is a reflection of planetary-scale instability. In addition, IE has been shown previously to increase during flow regime transitions in general, even those not associated with blocking events. Here, a 31-year IE diagnostic time series is examined for changes in short term (5–40 days) planetary-scale variability that may correspond flow regime changes in an increased carbon dioxide environment. The time-series analysis herein indicates that the IE diagnostic provides evidence for approximately 30–35 atmospheric flow regime transitions per year in a warmer climate, which is similar to that of the control run and the latest 30-year observed climate, as derived from re-analyses. This result has implications regarding the predictability of weather in a warmer world.

The atmospheric ‘greenhouse effect’ is an adiabatic process

Nikolov N, Zeller K (2017) New Insights on the Physical Nature of the Atmospheric Greenhouse Effect Deduced from an Empirical Planetary Temperature Model. Environ Pollut Climate Change 1:112.s

A recent study has revealed that the Earth’s natural atmospheric greenhouse effect is around 90 K or about 2.7 times stronger than assumed for the past 40 years. A thermal enhancement of such a magnitude cannot be explained with the observed amount of outgoing infrared long-wave radiation absorbed by the atmosphere (i.e. ≈ 158 W m-2), thus requiring a re-examination of the underlying Greenhouse theory. We present here a new investigation into the physical nature of the atmospheric thermal effect using a novel empirical approach toward predicting the Global Mean Annual near-surface equilibrium Temperature (GMAT) of rocky planets with diverse atmospheres. Our method utilizes Dimensional Analysis (DA) applied to a vetted set of observed data from six celestial bodies representing a broad range of physical environments in our Solar System, i.e. Venus, Earth, the Moon, Mars, Titan (a moon of Saturn), and Triton (a moon of Neptune). Twelve relationships (models) suggested by DA are explored via non-linear regression analyses that involve dimensionless products comprised of solar irradiance, greenhouse-gas partial pressure/density and total atmospheric pressure/density as forcing variables, and two temperature ratios as dependent variables. One non-linear regression model is found to statistically outperform the rest by a wide margin. Our analysis revealed that GMATs of rocky planets with tangible atmospheres and a negligible geothermal surface heating can accurately be predicted over a broad range of conditions using only two forcing variables: top-of-the-atmosphere solar irradiance and total surface atmospheric pressure. The hereto discovered interplanetary pressure-temperature relationship is shown to be statistically robust while describing a smooth physical continuum without climatic tipping points. This continuum fully explains the recently discovered 90 K thermal effect of Earth’s atmosphere. The new model displays characteristics of an emergent macro-level thermodynamic relationship heretofore unbeknown to science that has important theoretical implications. A key entailment from the model is that the atmospheric ‘greenhouse effect’ currently viewed as a radiative phenomenon is in fact an adiabatic (pressure-induced) thermal enhancement analogous to compression heating and independent of atmospheric composition. Consequently, the global down-welling long-wave flux presently assumed to drive Earth’s surface warming appears to be a product of the air temperature set by solar heating and atmospheric pressure. In other words, the so-called ‘greenhouse back radiation’ is globally a result of the atmospheric thermal effect rather than a cause for it. Our empirical model has also fundamental implications for the role of oceans, water vapour, and planetary albedo in global climate. Since produced by a rigorous attempt to describe planetary temperatures in the context of a cosmic continuum using an objective analysis of vetted observations from across the Solar System, these findings call for a paradigm shift in our understanding of the atmospheric ‘greenhouse effect’ as a fundamental property of climate.

Analysis of polonium, plutonium, americium and uranium in drinking water

Lemons, B.; Khaing, H.; Ward, A.; Thakur, P. A rapid method for the sequential separation of polonium, plutonium, americium and uranium in drinking water. Applied Radiation and Isotopes June 2018 136:10-17

A new sequential separation method for the determination of polonium and actinides (Pu, Am and U) in drinking water samples has been developed that can be used for emergency response or routine water analyses. For the first time, the application of TEVA chromatography column in the sequential separation of polonium and plutonium has been studied. This method utilizes a rapid Fe+3 co-precipitation step to remove matrix interferences, followed by plutonium oxidation state adjustment to Pu4+ and an incubation period of ~ 1 h at 50–60 °C to allow Po2+ to oxidize to Po4+. The polonium and plutonium were then separated on a TEVA column, while separation of americium from uranium was performed on a TRU column. After separation, polonium was micro-precipitated with copper sulfide (CuS), while actinides were micro co-precipitated using neodymium fluoride (NdF3) for counting by the alpha spectrometry. The method is simple, robust and can be performed quickly with excellent removal of interferences, high chemical recovery and very good alpha peak resolution. The efficiency and reliability of the procedures were tested by using spiked samples. The effect of several transition metals (Cu2+, Pb2+, Fe3+, Fe2+, and Ni2+) on the performance of this method were also assessed to evaluate the potential matrix effects. Studies indicate that presence of up to 25 mg of these cations in the samples had no adverse effect on the recovery or the resolution of polonium alpha peaks.

Application of nanoparticles for household water treatment

T.C., Prathna; Sharma, Saroj Kumar; Kennedy, Maria. Review: Nanoparticles in household level water treatment: An overview Separation and Purification Technology 30 June 2018 199:260-270

Providing safe drinking water is a great challenge for both the developing and the developed world. Increasing demand and source water quality deterioration has led to the exploration of new technological innovations for better water management. Nanotechnology holds great promise in ensuring safe drinking water through designing innovative centralised and decentralised (household-level) water treatment systems. The paper provides an overview of recent advances in nanotechnologies for (household level) water treatment processes, such as its use as nanoadsorbents, photocatalysts, microbial disinfectants and in membranes. Extensive implementation of nanotechnology for water treatment would require overcoming the high cost of the nanomaterials by enabling their reuse and regeneration. This would also ensure minimising potential environmental exposure. Potential advances in nanotechnology must go hand in hand with environmental health to alleviate any undesirable consequences to humans.

A low-cost non-instrumental method for arsenic speciation

Pena-Pereira, Francisco; Villar-Blanco, Lorena; Lavilla, Isela; Bendicho, Carlos. Test for arsenic speciation in waters based on a paper-based analytical device with scanometric detection. Analytica Chimica Acta 29 June 2018 1011:1-10 DOI: 10.1016/j.aca.2018.01.007

A rapid, simple and affordable method for arsenic speciation analysis is described in this work. The proposed methodology involves in situ arsine generation, transfer of the volatile to the headspace and its reaction with silver nitrate at the detection zone of a paper-based analytical device (PAD). Thus, silver nitrate acts as a recognition element for arsine in the paper-based sensor. The chemical reaction between the recognition element and the analyte derivative results in the formation of a colored product which can be detected by scanning the detection zone and data treatment with an image processing and analysis program. Detection and injection zones were defined in the paper substrate by formation of hydrophobic barriers, thus enabling the formation of the volatile derivative without affecting the chemical stability of the recognition element present in the PAD. Experimental parameters influencing the analytical performance of the methodology, namely color mode detection, composition of the paper-based sensor and hydride generation and mass transfer conditions, were evaluated. Under optimal conditions, the proposed method showed limits of detection and quantification of 1.1 and 3.6 ng mL−1, respectively. Remarkably, the limit of detection of the method reported herein was much lower than the maximum contaminant levels set by both the World Health Organization and the US Environmental Protection Agency for arsenic in drinking water, unlike several commercially available arsenic test kits. The repeatability, expressed as relative standard deviation, was found to be 7.1% (n = 8). The method was validated against the European Reference Material ERM®-CA615 groundwater and successfully applied to the determination of As(III), As(V) and total inorganic As in different water samples. Furthermore, the method can be used for the screening analysis of total arsenic in waters when a cut-off level of 7 ng mL−1 is used.

Desalination may help Cape Town water crisis

“For months, Cape Town, a city of four million people, has been facing the doomsday scenario of taps running dry. The city’s Theewaterskloof Dam, a water reservoir which once supplied the city 50 percent of its supply, looks more like a desert area.” click here