Climate models are theoretical; Underlying mechanisms are poorly understood

Matthew Collins, Shoshiro Minobe, Marcelo Barreiro, Simona Bordoni,
Yohai Kaspi, Akira Kuwano-Yoshida, Noel Keenlyside, Elisa Manzini, Christopher H. O’Reilly, Rowan Sutton, Shang-Ping Xie, Olga Zolina. Challenges and opportunities for improved understanding of regional climate dynamics. Nature Climate Change, volume 8, pages 101–108 (2018).

Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical–extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.

Comments are closed.