Daily Archives: February 11, 2020

Gulf Aqaba corals resilient to ocean warming and acidification

Jessica Bellworthy, Malika Menoud, Thomas Krueger, Anders Meibom, Maoz Fine. Developmental carryover effects of ocean warming and acidification in corals from a potential climate refugium, the Gulf of Aqaba. Journal of Experimental Biology, 2019, 222: doi: 10.1242/jeb.186940 Published 2 January 2019.

Coral reefs are degrading from the effects of anthropogenic activities, including climate change. Under these stressors, their ability to survive depends upon existing phenotypic plasticity, but also transgenerational adaptation. Parental effects are ubiquitous in nature, yet empirical studies of these effects in corals are scarce, particularly in the context of climate change. This study exposed mature colonies of the common reef-building coral Stylophora pistillata from the Gulf of Aqaba to seawater conditions likely to occur just beyond the end of this century during the peak planulae brooding season (Representative Concentration Pathway 8.5: pH −0.4 and +5°C beyond present day). Parent and planulae physiology were assessed at multiple time points during the experimental incubation. After 5 weeks of incubation, the physiology of the parent colonies exhibited limited treatment-induced changes. All significant time-dependent changes in physiology occurred in both ambient and treatment conditions. Planulae were also resistant to future ocean conditions, with protein content, symbiont density, photochemistry, survival and settlement success not significantly different compared with under ambient conditions. High variability in offspring physiology was independent of parental or offspring treatments and indicate the use of a bet-hedging strategy in this population. This study thus demonstrates weak climate-change-associated carryover effects. Furthermore, planulae display temperature and pH resistance similar to those of adult colonies and therefore do not represent a larger future population size bottleneck. The findings add support to the emerging hypothesis that the Gulf of Aqaba may serve as a coral climate change refugium aided by these corals’ inherent broad physiological resistance.

Pacific and Indian Ocean atoll islands are either stable or increasing in area

Virginie K. E. Duvat. A global assessment of atoll island planform changes over the past decades. WIREs Climate Change, Volume 10, Issue 1, 2018  https://doi.org/10.1002/wcc.557

Over the past decades, atoll islands exhibited no widespread sign of physical destabilization in the face of sea‐level rise. A reanalysis of available data, which cover 30 Pacific and Indian Ocean atolls including 709 islands, reveals that no atoll lost land area and that 88.6% of islands were either stable or increased in area, while only 11.4% contracted. Atoll islands affected by rapid sea‐level rise did not show a distinct behavior compared to islands on other atolls. Island behavior correlated with island size, and no island larger than 10 ha decreased in size. This threshold could be used to define the minimum island size required for human occupancy and to assess atoll countries and territories’ vulnerability to climate change. Beyond emphasizing the major role of climate drivers in causing substantial changes in the configuration of islands, this reanalysis of available data indicates that these drivers explain subregional variations in atoll behavior and within‐atoll variations in island and shoreline (lagoon vs. ocean) behavior, following atoll‐specific patterns. Increasing human disturbances, especially land reclamation and human structure construction, operated on atoll‐to‐shoreline spatial scales, explaining marked within‐atoll variations in island and shoreline behavior. Collectively, these findings highlight the heterogeneity of atoll situations. Further research needs include addressing geographical gaps (Indian Ocean, Caribbean, north‐western Pacific atolls), using standardized protocols to allow comparative analyses of island and shoreline behavior across ocean regions, investigating the role of ecological drivers, and promoting interdisciplinary approaches. Such efforts would assist in anticipating potential future changes in the contributions and interactions of key drivers.