Category Archives: Membrane Technology

Predicting Fouling in RO Desalination Systems

Ruiz-García A, Melián-Martel N, Nuez I. Short Review on Predicting Fouling in RO Desalination. Membranes (Basel) 2017 Oct 24;7(4). pii: E62. doi: 10.3390/membranes7040062.

Reverse Osmosis (RO) membrane fouling is one of the main challenges that membrane manufactures, the scientific community and industry professionals have to deal with. The consequences of this inevitable phenomenon have a negative effect on the performance of the desalination system. Predicting fouling in RO systems is key to evaluating the long-term operating conditions and costs. Much research has been done on fouling indices, methods, techniques and prediction models to estimate the influence of fouling on the performance of RO systems. This paper offers a short review evaluating the state of industry knowledge in the development of fouling indices and models in membrane systems for desalination in terms of use and applicability. Despite major efforts in this field, there are gaps in terms of effective methods and models for the estimation of fouling in full-scale RO desalination plants. In existing models applied to full-scale RO desalination plants, neither the spacer geometry of membranes, nor the efficiency and frequency of chemical cleanings are considered.

Predicting ultrafiltration performance using Principal Component Analysis

Teychene B, Touffet A, Baron J, Welte B, Joyeux M, Gallard H. Predicting of ultrafiltration performances by advanced data analysis. Water research. 2017 Nov 9;129:365-374. doi: 10.1016/j.watres.2017.11.023.

In order to optimize drinking water production operation, membrane users can use several analytical tools that help membrane fouling prediction and alleviate fouling by a proper feed water resource selection. However, during strong fouling event, membrane decision-makers still face short-term deadline to decide between different options (e.g. optimization of pretreatment or change in feed water quality). Hence, statistical approach might help to better select the most relevant analytical parameter related to fouling potential of a specific resource in order to speed-up decision taking. In this study, the physical and chemical properties and the filtration performances (at lab-scale) of five groundwater resources, selected as potential resources of a large drinking production site of Paris (France), was evaluated through one year. Principal component analysis emphasizes the strong link between waters’ organic matrix and fouling propensity. Cluster analysis of filtration performances allowed classifying the water samples into three groups exhibiting strong, low and intermediate fouling. Finally, multiple linear regressions performed on all collected data indicated that strong fouling events were related to a combined increase of carbon content and protein like-substances while intermediate fouling might only be anticipated by an increase of fluorescence signal associated to protein like-substances. This study demonstrates that advanced data analysis might be a powerful tool to better manage water resources selection used for drinking water production and to forecast filtration performances in a context of water quality degradation.

Solar Powered NF/RO Systems, Tanzania

Owusu-Agyeman I, Shen J, Schäfer AI. Renewable energy powered membrane technology: Impact of pH and ionic strength on fluoride and natural organic matter removal. The Science of the total environment. 2017 Nov 23;621:138-147. doi: 10.1016/j.scitotenv.2017.11.111.

Real water pH and ionic strength vary greatly, which influences the performance of membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Systematic variation of pH (3-12) and ionic strength (2-10g/L as total dissolved solids (TDS)) was undertaken with a real Tanzanian water to investigate how water quality affects retention mechanisms of fluoride (F) and natural organic matter (NOM). An autonomous solar powered NF/RO system driven by a solar array simulator was supplied with constant power from a generator. An open NF (NF270) and a brackish water RO (BW30) membrane were used. A surface water with a very high F (59.7mg/L) and NOM (110mgC/L) was used. Retention of F by NF270 was <20% at pH<6, increased to 40% at pH6, and 60-70% at pH7-12, indicating a dominance of charge repulsion while being ineffective in meeting the guideline of 1.5mg/L. Increase in ionic strength led to a significant decline in retention of F (from 70 to 50%) and electrical conductivity (from 60 to 10%) by NF270, presumably due to charge screening. In contrast, BW30 retained about 50% of F at pH3, >80% at pH4, and about 99% at pH >5, due to the smaller pore size and hence a more dominant size exclusion. In consequence, only little impact of ionic strength increase was observed for BW30. The concentration of NOM in permeates of both NF270 and BW30 were typically >2mg/L. This was not affected by pH or ionic strength due to the fact that the bulk of NOM was rejected by both membranes through size exclusion. The research is carried out in the context of providing safe drinking water for rural and remote communities where infrastructure is lacking, and water quality varies significantly. While other studies focus on energy fluctuations, this research emphasises on feed water quality that affects system performance and may alter due to a number of environmental factors.

Arsenic Removal Using Reverse Osmosis

Schmidt SA, Gukelberger E, Hermann M, Fiedler F, Großmann B, Hoinkis J, Ghosh A, Chatterjee D, Bundschuh J. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system-Towards sustainable drinking water production. J Hazard Mater. 2016 Jun 11;318:671-678. doi: 10.1016/j.jhazmat.2016.06.005. 

Arsenic contamination of groundwater is posing a serious challenge to drinking water supplies on a global scale. In India and Bangladesh, arsenic has caused the most serious public health issue in the world for nearly two decades. The aim of this work was to study an arsenic removal system based on reverse osmosis at pilot scale treating two different water sources from two different locations in the State of Bihar, India. For this purpose two villages, Bind Toli and Ramnagar in the Patna District were selected, both located very close to the river Ganga. The trials were conducted with aerated and non-aerated groundwater. It is the first time that the arsenic removal efficiency for aerated and non-aerated groundwater by reverse osmosis technology in combination with an energy-saving recovery system have been studied. As the principle of reverse osmosis requires a relatively high pressure, its energy demand is naturally high. By using an energy recovery system, this demand can be lowered, leading to an energy demand per liter permeate of 3-4Wh/L only. Due to high iron levels in the groundwater and as a consequence the precipitation of ferric (hydr)oxides, it was necessary to develop a granular media filter for the trials under aeration in order to protect the membrane from clogging. Two different materials, first locally available sand, and second commercially available anthracite were tested in the granular media filter. For the trials with aerated groundwater, total arsenic removal efficiency at both locations was around 99% and the arsenic concentration in permeate was in compliance with the WHO and National Indian Standard of 10μg/L. However, trials under anoxic conditions with non-aerated groundwater could not comply with this standard. Additionally a possible safe discharge of the reverse osmosis concentrate into an abandoned well was studied. It was observed that re-injection of reject water underground may offer a safe disposal option. However, long-term hydrogeological studies need to be conducted for confirmation.

Trace Hormone Removal by UV Photolysis with Nanofiltration

Sanches S, Rodrigues A, Cardoso VV, Benoliel MJ, Crespo JG, Pereira VJ. Comparison of UV photolysis, nanofiltration, and their combination to remove hormones from a drinking watersource and reduce endocrine disrupting activity. Environmental science and pollution research international. 2016 Feb 29.

A sequential water treatment combining low pressure ultraviolet direct photolysis with nanofiltration was evaluated to remove hormones from water, reduce endocrine disrupting activity, and overcome the drawbacks associated with the individual processes (production of a nanofiltration-concentrated retentate and formation of toxic by-products). 17β-Estradiol, 17α-ethinylestradiol, estrone, estriol, and progesterone were spiked into a real water sample collected after the sedimentation process of a drinking water treatment plant. Even though the nanofiltration process alone showed similar results to the combined treatment in terms of the water quality produced, the combined treatment offered advantage in terms of the load of the retentate and decrease in the endocrine-disrupting activity of the samples. Moreover, the photolysis by-products produced, with higher endocrine disrupting activity than the parent compounds, were effectively retained by the membrane. The combination of direct LP/UV photolysis with nanofiltration is promising for a drinking water utility that needs to cope with sudden punctual discharges or deterioration of the water quality and wants to decrease the levels of chemicals in the nanofiltration retentate.

A Hybrid NF/RO System for Nitrate Removal

A hybrid NF/RO filtration scheme for nitrate removal is proposed and tested. Production of low salinity brines allowed to be discharged to sewerage systems. The new scheme can be applied in single or double NF stage modes prior to RO step. Appropriate NF membranes for the process should reject Cl better than NO3. The results show the process to be both technically feasible and energy efficient.

Epsztein R, Nir O, Lahav O, Green M. Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme. Chemical Engineering Journal 1 November 2015 279:372-378

A novel and potentially cost effective filtration scheme for removal of nitrate from groundwater, characterized by production of low salinity waste brine that can be easily discharged to sewerage systems and high product-water recovery, is proposed. The inherent preference of particular NF membranes for rejecting chloride and sodium over nitrate ions is utilized in a preliminary NF stage to remove Na+, Cl+, Ca2+ and Mg2+ to a side stream. In a second stage, RO is applied to remove NO3 and the RO permeate is mixed with the side stream of the NF stage to create product water low in nitrate, yet with a balanced composition consisting all the required species and minerals. The number of NF stages depends mainly on the rejection efficiency of the NF membrane. Based on Israeli regulations for both drinking water and required composition of brines discharged to the sewage, a treatment scheme composed of a single and double NF stages followed by RO is shown to reach water recoveries of 91.6% and 94.3%, respectively. Each NF stage raises the energy cost by approximately 0.5cent/m3 product water. However, this cost is easily paid back by the inherent additional advantages of the combined scheme, i.e., less water treated by the RO, significant increase in total recovery ratio, no need in re-mineralization of the product water and minimization of calcium carbonate precipitation potential on the RO membrane. The principles for process design are described, making the specific treatment scheme proposed here easily adjustable to other regulatory requirements and other water characteristics. A provisional patent has been filed.

RO Membranes for Desalination

Seema S. Shenvi, Arun M. Isloor, A.F. Ismail. A review on RO membrane technology: Developments and challenges. Desalination Volume 368, 15 July 2015, 10–26

Reverse osmosis (RO) based desalination is one of the most important and widely recognized technologies for production of fresh water from saline water. Since its conception and initiation, a significant development has been witnessed in this technology w.r.t. materials, synthesis techniques, modification and modules over the last few decades. The working of a RO plant inclusive of the pretreatment and post-treatment procedures has been briefly discussed in the article. The main objective of this review is to highlight the historical milestones achieved in RO technology in terms of membrane performance, the developments seen over the last few years and the challenges perceived.

The material properties of the membrane dominate the performance of a RO process. The emergence of nano-technology and biomimetic RO membranes as the futuristic tools is capable of revolutionizing the entire RO process. Hence the development of nano-structured membranes involving thin film nano-composite membranes, carbon-nanotube membranes and aquaporin-based membranes has been focussed in detail. The problems associated with a RO process such as scaling, brine disposal and boron removal are briefed and the measures adopted to address the same have been discussed.