Category Archives: Microbial contaminants

Lake Erie Microcystis Bloom Shutdown of Water Supply, Toledo, Ohio

Steffen MM, Davis TW, McKay RM, Bullerjahn GS, Krausfeldt LE, Stough JMA, Neitzey ML, Gilbert NE, Boyer GL, Johengen TH, Gossiaux DC, Burtner AM, Palladino D, Rowe M, Dick GJ, Meyer K, Levy S, Boone B, Stumpf R, Wynne T, Zimba PV, Gutierrez DB, Wilhelm SW. Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: linkages between biology and the water supply shutdown of Toledo, Ohio. Environmental Science and Technology. 2017 May 23. doi: 10.1021/acs.est.7b00856.

Annual cyanobacterial blooms dominated by Microcystis have occurred in western Lake Erie (USA/Canada) during summer months since 1995. The production of toxins by bloom-forming cyanobacteria can lead to drinking water crises, such as the one experienced by the city of Toledo in August of 2014, when the city was rendered without drinking water for > 2 days. It is important to understand the conditions and environmental cues that were driving this specific bloom to provide a scientific framework for management of future bloom events. To this end, samples were collected and metatranscriptomes generated coincident with the collection of environmental metrics for eight sites located in the western basin of Lake Erie, including a station proximal to the water intake for the city of Toledo. These data were used to generate a basin-wide ecophysiological fingerprint of Lake Erie Microcystis populations in August 2014 for comparison to previous bloom communities. Our observations and analyses indicate that, at the time of sample collection, Microcystis populations were under dual nitrogen (N) and phosphorus (P) stress, as genes involved in scavenging of these nutrients were being actively transcribed. Targeted analysis of urea transport and hydrolysis suggests a potentially important role for exogenous urea as a nitrogen source during the 2014 event. Finally, simulation data suggest a wind event caused microcystin-rich water from Maumee Bay to be transported east along the southern shoreline past the Toledo water intake. Coupled with a significant cyanophage infection, these results reveal that a combination of biological and environmental factors led to the disruption of the Toledo water supply. This scenario was not atypical of re-occurring Lake Erie blooms and thus may re-occur in the future.

Roof-Harvested Rain Water Poses Risks for Legionella and Mycobacterium

Hamilton KA, Ahmed W, Toze S, Haas CN. Human health risks for Legionella and Mycobacterium avium complex (MAC) from potable and non-potable uses of roof-harvested rainwater. Water research. 2017 Apr 5;119:288-303. doi: 10.1016/j.watres.2017.04.004.

A quantitative microbial risk assessment (QMRA) of opportunistic pathogens Legionella pneumophila (LP) and Mycobacterium avium complex (MAC) was undertaken for various uses of roof-harvested rainwater (RHRW) reported in Queensland, Australia to identify appropriate usages and guide risk management practices. Risks from inhalation of aerosols due to showering, swimming in pools topped up with RHRW, use of a garden hose, car washing, and toilet flushing with RHRW were considered for LP while both ingestion (drinking, produce consumption, and accidental ingestion from various activities) and inhalation risks were considered for MAC. The drinking water route of exposure presented the greatest risks due to cervical lymphadenitis and disseminated infection health endpoints for children and immune-compromised populations, respectively. It is therefore not recommended that these populations consume untreated rainwater. LP risks were up to 6 orders of magnitude higher than MAC risks for the inhalation route of exposure for all scenarios. Both inhalation and ingestion QMRA simulations support that while drinking, showering, and garden hosing with RHRW may present the highest risks, car washing and clothes washing could constitute appropriate uses of RHRW for all populations, and toilet flushing and consumption of lettuce irrigation with RHRW would be appropriate for non- immune-compromised populations.

Cholera Outbreak in Vietnam from Unsafe Water

Nguyen TV, Pham QD, Do QK, Diep TT, Phan HC, Ho TV, Do HT, Phan LT, Tran HN. Cholera returns to southern Vietnam in an outbreak associated with consuming unsafe water through iced tea: A matched case-control study. PLoS neglected tropical diseases. 2017 Apr 13;11(4):e0005490. doi: 10.1371/journal.pntd.0005490.

BACKGROUND: After more than a decade of steadily declining notifications, the number of reported cholera cases has recently increased in Vietnam. We conducted a matched case-control study to investigate transmission of cholera during an outbreak in Ben Tre, southern Vietnam, and to explore the associated risk factors.

METHODOLOGY/PRINCIPAL FINDINGS: Sixty of 71 diarrheal patients confirmed to be infected with cholera by culture and diagnosed between May 9 and August 3, 2010 in Ben Tre were consecutively recruited as case-patients. Case-patients were matched 1:4 to controls by commune, sex, and 5-year age group. Risk factors for cholera were examined by multivariable conditional logistic regression. In addition, environmental samples from villages containing case-patients were taken to identify contamination of food and water sources. The regression indicated that drinking iced tea (adjusted odds ratio (aOR) = 8.40, 95% confidence interval (CI): 1.84-39.25), not always boiling drinking water (aOR = 2.62, 95% CI: 1.03-6.67), having the main source of water for use being close to a toilet (aOR = 4.36, 95% CI: 1.37-13.88), living with people who had acute diarrhea (aOR = 13.72, 95% CI: 2.77-67.97), and little or no education (aOR = 4.89, 95% CI: 1.18-20.19) were significantly associated with increased risk of cholera. In contrast, drinking stored rainwater (aOR = 0.17, 95% CI: 0.04-0.63), eating cooked seafood (aOR = 0.27, 95% CI: 0.10-0.73), and eating steamed vegetables (aOR = 0.22, 95% CI: 0.07-0.70) were protective against cholera. Vibrio cholerae O1 Ogawa carrying ctxA was found in two of twenty-five river water samples and one of six wastewater samples.

CONCLUSIONS/SIGNIFICANCE: The magnitude of the cholera outbreak in Ben Tre was lower than in other similar settings. This investigation identified several risk factors and underscored the importance of continued responses targeting cholera prevention in southern Vietnam. The association between drinking iced tea and cholera and the spread of V. cholerae O1, altered El Tor strains warrant further research. These findings might be affected by a number of limitations due to the inability to capture asymptomatic or mildly symptomatic infections, the possible underreporting of personal unhygienic behaviors, and the purposive selection of environmental samples.

Monitoring Opportunistic Pathogens in Premise Plumbing

Wang H, Bédard E, Prévost M, Camper AK, Hill VR, Pruden A. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. Water research. 2017 Mar 25;117:68-86. doi: 10.1016/j.watres.2017.03.046.

Opportunistic premise (i.e., building) plumbing pathogens (OPPPs, e.g., Legionella pneumophila, Mycobacterium avium complex, Pseudomonas aeruginosa, Acanthamoeba, and Naegleria fowleri) are a significant and growing source of disease. Because OPPPs establish and grow as part of the native drinking water microbiota, they do not correspond to fecal indicators, presenting a major challenge to standard drinking water monitoring practices. Further, different OPPPs present distinct requirements for sampling, preservation, and analysis, creating an impediment to their parallel detection. The aim of this critical review is to evaluate the state of the science of monitoring OPPPs and identify a path forward for their parallel detection and quantification in a manner commensurate with the need for reliable data that is informative to risk assessment and mitigation. Water and biofilm sampling procedures, as well as factors influencing sample representativeness and detection sensitivity, are critically evaluated with respect to the five representative bacterial and amoebal OPPPs noted above. Available culturing and molecular approaches are discussed in terms of their advantages, limitations, and applicability. Knowledge gaps and research needs towards standardized approaches are identified.

Microbial Contamination of Drinking Water Tubewells; Bangladesh

Dey NC, Parvez M, Dey D, Saha R, Ghose L, Barua MK, Islam A, Chowdhury MR. Microbial contamination of drinking water from risky tubewells situated in different hydrological regions of Bangladesh. Int J Hyg Environ Health. 2016 Dec 29. pii: S1438-4639(16)30270-X. doi: 10.1016/j.ijheh.2016.12.007.

This study, conducted in 40 selected upazilas covering four hydrological regions of Bangladesh, aimed at determining the risk of selected shallow tubewells (depth<30m) used for drinking purpose (n=26,229). This was based on WHO’s sanitary inspection guidelines and identifying the association of sanitary inspection indicators and risk scores with microbiological contamination of shallow tubewells. The main objective of the study was to observe the seasonal and regional differences of microbial contamination and finally reaching a conclusion about safe distance between tubewells and latrines by comparing the contamination of two tubewell categories (category-1: distance ≤10m from nearest latrine; n=80 and category 2: distances 11-20m from nearest latrine; n=80) in different geographical contexts. About 62% of sampled tubewells were at medium to high risk according to WHO’s sanitary inspection guidelines, while the situation was worst in south-west region. Microbiological contamination was significantly higher in sampled category-1 tubewells compared to category-2 tubewells, while the number of contaminated tubewells and level of contamination was higher during wet season. About 21% (CI95=12%-30%), 54% (CI95=43%-65%) and 58% (CI95=46%-69%) of water samples collected from category-1 tubewells were contaminated by E. coli, FC, and TC respectively during the wet season. The number of category-1 tubewells having E.coli was highest in the north-west (n=8) and north-central (n=4) region during wet season and dry season respectively, while the level of E.coli contamination in tubewell water (number of CFU/100ml of sample) was significantly higher in north-central region. However, the south-west region had the highest number of FC contaminated category-1 tubewells (n=16 & n=17; respectively during wet and dry season) and significantly a higher level of TC and FC in sampled Category-1 tubewells than north-west, north-central and south-east region, mainly during wet season. Multivariate regression analysis could identified some sanitary inspection indicators, such as tubewell within <10m of latrine, platform absent/broken, pollution source (i.e. household’s waste dumping point/poultry/dairy farm) within 10m of tubewell and unimproved sanitation facility which were significantly associated with presence of microbial contaminants in tubewell water (p<0.01). A tubewell with high risk level was associated with a higher chance of having FC and TC in tubewell water than a tubewell with a medium risk during wet season, but no such conclusion could be drawn in case of E.coli contamination. Construction of pit latrine in areas with high water table should be highly discouraged. Raised sealed pits or flush/pour flash to septic tank could be installed considering sanitary inspection criteria. Water should be treated before drinking.

Investigating a Waterborne Outbreak of Cryptosporidiosis; Ireland

Mahon M, Doyle S. Waterborne outbreak of cryptosporidiosis in the South East of Ireland: weighing up the evidence. Ir J Med Sci. 2017 Jan 13. doi: 10.1007/s11845-016-1552-1.

BACKGROUND: In late Spring 2012, 12 cases of cryptosporidiosis in a town in the South East of Ireland were notified to the regional Department of Public Health.

AIM: The purpose of this paper is to describe the outbreak and the investigative process which led to the conclusion that the source was a public drinking water supply.

METHODS: Outbreak and incident control teams were convened to investigate and control the outbreak.

RESULTS: Eleven cases were speciated as Cryptosporidium parvum. GP60 analysis demonstrated that 10 were C. parvum IIaA20G3R1, indicating that the cases were linked. The public water supply was the only common risk factor identified. Increased water sampling identified Cryptosporidium muris/andersoni in the treated water at one of two water treatment plants (Water Treatment Plant, WTP A) for the supply, and on the network. C. parvum was subsequently identified in raw water from WTP A.

CONCLUSIONS: The Health Service Executive (HSE) concluded that this outbreak was “probably associated with water” produced at WTP A based on (1) descriptive epidemiological evidence suggesting water-related illness and excluding other obvious explanations; and (2) water treatment failure at WTP A. WTP A was closed to facilitate an upgrade. No boil water notice was required as a supplementary supply was available. The upgrade was completed and the incident closed in 2013.

Algae Removal of Pharmaceutical and Personal Care Products (PPCPs); Lake Mead

Bai X, Acharya K. Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water. The Science of the total environment. 2017 Jan 12. pii: S0048-9697(16)32890-X. doi: 10.1016/j.scitotenv.2016.12.192.

The persistence and fate of pharmaceutical and personal care products (PPCPs) in the Lake Mead ecosystem are particularly important considering the potential ecological risks and human health impacts. This study evaluated the removal of five common PPCPs (i.e., trimethoprim, sulfamethoxazole, carbamazepine, ciprofloxacin, and triclosan) from Lake Mead water mediated by the green alga Nannochloris sp. The results from the incubation studies showed that trimethoprim and carbamazepine were highly resistant to uptake in the algal cultural medium and were measured at approximately 90%-100% of the applied dose after 14days of incubation. Sulfamethoxazole was found relatively persistent, with >60% of the applied dose remaining in the water after 14days, and its removal was mainly caused by algae-mediated photolysis. However, ciprofloxacin and triclosan dissipated significantly and nearly 100% of the compounds were removed from the water after 7days of incubation under 24h of light. Ciprofloxacin and triclosan were highly susceptible to light, and their estimated half-lives were 12.7hours for ciprofloxacin and 31.2hours for triclosan. Algae-mediated sorption contributed to 11% of the removal of trimethoprim and sulfamethoxazole, 13% of the removal of carbamazepine, and 27% of the removal of triclosan from the lake water. This research showed that 1) trimethoprim, sulfamethoxazole, and carbamazepine are quite persistent in aquatic environments and may potentially affect human health via drinking water intake; 2) photolysis is the dominant pathway to remove ciprofloxacin from aquatic ecosystems, which indicates that ciprofloxacin may have lower ecological risks compared with other PPCPs; and 3) triclosan can undergo photolysis as well as algae-mediated uptake and it may potentially affect the food web because of its high toxicity to aquatic species.