Category Archives: Monitoring and Analysis

Smart Phone monitoring of hexavalent chromium, fluoride and iron in drinking water

Santra D, Mandal S, Santra A, Ghorai UK. Cost effective and wireless portable device for estimation of hexavalent Chromium, Fluoride and Iron in drinking water. Anal Chem. 2018 Oct 3. doi: 10.1021/acs.analchem.8b03337.

The quality of drinking water often remains unknown to the people because of the inadequacy of cost-effective testing systems that can be used in field. Major portable instruments for water quality analysis include Ion Selective Electrodes (ISE) or Colorimeters. These are low cost devices but in case of multiple analyte detection like hexavalent Cr, Fluoride (F-) and Iron (Fe) with single instrumentation, no portable systems are available till date as per the authors’ knowledge. In this paper, we demonstrate the working of a low cost (approximate price INR 1500 or US $ 20) portable colorimetric system that can be operated with android smartphones wirelessly to estimate the contamination levels of Cr(VI), F-, or Fe in drinking water. This system also generates absorption spectra by recording absorbance of the analyte using Light Dependent Resistor (LDR) sensor. An android application software named “Spectruino” is developed to calculate the concentration of the analytes. We strongly believe that this cost-effective portable system will be very useful to ensure the drinking water quality throughout the continent to improve human health.

Monitoring Long-Term Bacterial Dynamics in a Water Distribution System

Prest EI, Weissbrodt DG, Hammes F, van Loosdrecht MC. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System. PLoS One. 2016 Oct 28;11(10):e0164445. doi: 10.1371/journal.pone.0164445.

Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1-3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution network. Moreover, high-resolution FCM data enabled prediction of bacterial cell concentrations at specific water temperatures and time of year. The study highlights the need to systematically assess temporal fluctuations in parallel to spatial dynamics for individual drinking water distribution systems.

Monitoring Fluoride in Water Using a Smartphone

Levin S, Krishnan S, Rajkumar S, Halery N, Balkunde P. Monitoring of fluoride in water samples using a smartphone. The Science of the Total Environment. 2016 Feb 11;551-552:101-107. doi: 10.1016/j.scitotenv.2016.01.156.

In several parts of India, groundwater is the only reliable, year round source for drinking water. Prevention of fluorosis, a chronic disease resulting from excess intake of fluoride, requires the screening of all groundwater sources for fluoride in endemic areas. In this paper, the authors present a field deployable colorimetric analyzer based on an inexpensive smartphone embedded with digital camera for taking photograph of the colored solution as well as an easy-fit, and compact sample chamber (Akvo Caddisfly). Phones marketed by different smartphone makers were used. Commercially available zirconium xylenol orange reagent was used for determining fluoride concentration. A software program was developed to use with the phone for recording and analyzing the RGB color of the picture. Linear range for fluoride estimation was 0-2mgl-1. Around 200 samples, which consisted of laboratory prepared as well as field samples collected from different locations in Karnataka, India, were tested with Akvo Caddisfly. The results showed a significant positive correlation between Ion Selective Electrode (ISE) method and Akvo Caddisfly (Phones A, B and C), with correlation coefficient ranging between 0.9952 and 1.000. In addition, there was no significant difference in the mean fluoride content values between ISE and Phone B and C except for Phone A. Thus the smartphone method is economical and suited for groundwater fluoride analysis in the field.

Tap Water Perchlorate Levels in 5 Cities, Turkey

Erdemgil Y, Gözet T, Can Ö, Ünsal İ, Özpınar A. Perchlorate levels found in tap water collected from several cities in Turkey. Environmental Monitoring and Assessment. 2016 Mar;188(3):158. doi: 10.1007/s10661-016-5161-2.

Perchlorate is an inorganic anion that inhibits iodide transport to the thyroid by sodium-iodide transporters. Because perchlorate is highly soluble, stable, and mobile in water, drinking water is a potential source of perchlorate exposure. When exposed to perchlorate, thyroid dysfunction can be observed in sensitive populations (pregnant woman, infants, and children), especially those with iodide deficiency. The aim of this study was to determine the perchlorate levels in tap water from five cities in Turkey. Perchlorate concentrations of 145 tap water samples collected from Ankara, Isparta, Istanbul, Kayseri, and Sakarya were determined by liquid chromatography-tandem mass spectrometry. Mean and median values were found to be 0.15 and 0.07 μg/L, respectively. The median values (25-75 % percentile) of Istanbul, Ankara, Sakarya, Isparta, and Kayseri were 0.08 μg/L (0.04-0.09 μg/L), 0.07 μg/L (0.07-0.21 μg/L), 0.04 μg/L (0.04-0.04 μg/L), 0.03 μg/L (0.02-0.07 μg/L), and 0.25 μg/L (0.23-0.31 μg/L), respectively. The median perchlorate level observed in Kayseri was significantly higher than those found at other cities (p < 0.05). Perchlorate concentrations in water samples were lower than the interim drinking water health advisory level (15 μg/L) determined by the US Environmental Protection Agency. This study showed that perchlorate in drinking water is not the main source of exposure in these cities. Future studies should be performed to determine perchlorate levels in other potential sources, such as food products.

Cloud-Enabled Microscopy Detects Escherichia coli in 8 hrs

Golberg A, Linshiz G, Kravets I, Stawski N, Hillson NJ, Yarmush ML, Marks RS, Konry T. Cloud-enabled microscopy and droplet microfluidic platform for specific detection of Escherichia coli in water. PloS One. 2014 Jan 27;9(1):e86341. doi: 10.1371/journal.pone.0086341.

We report an all-in-one platform – ScanDrop – for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a “cloud” network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2-4 days for other currently available standard detection methods.

Online Biosensor for Toxicants in Water

Eltzov E, Slobodnik V, Ionescu RE, Marks RS. On-line biosensor for the detection of putative toxicity in water contaminants. Talanta. 2015 Jan;132:583-90. doi: 10.1016/j.talanta.2014.09.032.

Potential threat on drinking water requires monitoring solutions, such as the one proposed herein, as a real-time, wide ranged, water monitoring system to detect the presence of toxicants in water. We studied the role of a selected number of parameters affecting performance and, thus, improved the prototype into an optimized next-generation device, resulting in enabling increased measurement duration, coupled with increased sensitivity. The chosen parameters in question were the peristaltic flow system, the fiber probe matrix stability through a re-design of the fiber probe holder and flow unit cell, as well as the modulation of bacterial medium concentration to increase bioreporter performance while keeping biofouling in check. Measurements were made with spiked samples and validated with polluted field-collected samples.

Application of Microbial Indicators for Drinking Water Monitoring

Saxena G, Bharagava RN, Kaithwas G, Raj A. Microbial indicators, pathogens and methods for their monitoring in water environment. Journal of Water and Health. 2015 Jun;13(2):319-339.

Water is critical for life, but many people do not have access to clean and safe drinking water and die because of waterborne diseases. The analysis of drinking water for the presence of indicator microorganisms is key to determining microbiological quality and public health safety. However, drinking water-related illness outbreaks are still occurring worldwide. Moreover, different indicator microorganisms are being used in different countries as a tool for the microbiological examination of drinking water. Therefore, it becomes very important to understand the potentials and limitations of indicator microorganisms before implementing the guidelines and regulations designed by various regulatory agencies. This review provides updated information on traditional and alternative indicator microorganisms with merits and demerits in view of their role in managing the waterborne health risks as well as conventional and molecular methods proposed for monitoring of indicator and pathogenic microorganisms in the water environment. Further, the World Health Organization (WHO) water safety plan is emphasized in order to develop the better approaches designed to meet the requirements of safe drinking water supply for all mankind, which is one of the major challenges of the 21st century.