Category Archives: Ocean Acidification

Gulf Aqaba corals resilient to ocean warming and acidification

Jessica Bellworthy, Malika Menoud, Thomas Krueger, Anders Meibom, Maoz Fine. Developmental carryover effects of ocean warming and acidification in corals from a potential climate refugium, the Gulf of Aqaba. Journal of Experimental Biology, 2019, 222: doi: 10.1242/jeb.186940 Published 2 January 2019.

Coral reefs are degrading from the effects of anthropogenic activities, including climate change. Under these stressors, their ability to survive depends upon existing phenotypic plasticity, but also transgenerational adaptation. Parental effects are ubiquitous in nature, yet empirical studies of these effects in corals are scarce, particularly in the context of climate change. This study exposed mature colonies of the common reef-building coral Stylophora pistillata from the Gulf of Aqaba to seawater conditions likely to occur just beyond the end of this century during the peak planulae brooding season (Representative Concentration Pathway 8.5: pH −0.4 and +5°C beyond present day). Parent and planulae physiology were assessed at multiple time points during the experimental incubation. After 5 weeks of incubation, the physiology of the parent colonies exhibited limited treatment-induced changes. All significant time-dependent changes in physiology occurred in both ambient and treatment conditions. Planulae were also resistant to future ocean conditions, with protein content, symbiont density, photochemistry, survival and settlement success not significantly different compared with under ambient conditions. High variability in offspring physiology was independent of parental or offspring treatments and indicate the use of a bet-hedging strategy in this population. This study thus demonstrates weak climate-change-associated carryover effects. Furthermore, planulae display temperature and pH resistance similar to those of adult colonies and therefore do not represent a larger future population size bottleneck. The findings add support to the emerging hypothesis that the Gulf of Aqaba may serve as a coral climate change refugium aided by these corals’ inherent broad physiological resistance.

Coral reef fish not impaired by ocean acidification

Timothy D. Clark, Graham D. Raby, Dominique G. Roche, Sandra A. Binning, Ben Speers-Roesch, Fredrik Jutfelt, Josefin Sundin. Ocean acidification does not impair the behaviour of coral reef fishes. Nature (2020) doi:10.1038/s41586-019-1903-y

The partial pressure of CO2 in the oceans has increased rapidly over the past century, driving ocean acidification and raising concern for the stability of marine ecosystems1,2,3. Coral reef fishes are predicted to be especially susceptible to end-of-century ocean acidification on the basis of several high-profile papers4,5 that have reported profound behavioural and sensory impairments—for example, complete attraction to the chemical cues of predators under conditions of ocean acidification. Here, we comprehensively and transparently show that—in contrast to previous studies—end-of-century ocean acidification levels have negligible effects on important behaviours of coral reef fishes, such as the avoidance of chemical cues from predators, fish activity levels and behavioural lateralization (left–right turning preference). Using data simulations, we additionally show that the large effect sizes and small within-group variances that have been reported in several previous studies are highly improbable. Together, our findings indicate that the reported effects of ocean acidification on the behaviour of coral reef fishes are not reproducible, suggesting that behavioural perturbations will not be a major consequence for coral reef fishes in high CO2 oceans.

Ocean acidification is a myth

“The phrase “ocean acidification” was literally invented out of thin air in 2003 by Ken Colder to enable liberal arts majors to sound sciencey when scaring the bejesus out of the scientifically illiterate masses. The geochemical process has been well-understood for about 100 years… But didn’t get a crisis-monger nickname until 2003.” click here

The Great Barrier Reef adapts to ecosystem changes

“The Great Barrier Reef spans 2,000 kilometers and five degrees Celsius from 27 to 32°C and we’re still finding reefs we didn’t even know about. The pH swings on a daily basis, and fish do better when it does. One coral has adapted to ocean “acidification” in 6 months. Other fish remarkably adapted from salt to freshwater in just fifty years. As Peter Ridd says: Of all the ecosystems in the world, the reef is one that’s best at adapting to climate change.click here

Impact of CO2 on ocean chemistry

“The pH value higher than 7 allows seawater to dissolve and react huge amounts of CO2 , carbon dioxide, thus affecting the amount of this gas in the atmosphere by absorbing excess of it. To calculate this excess in respect to what would be the true equilibrium value in the air, all of the chemical reactions involved have to be simultaneously computed, accounting for their equilibrium constants, which in turn depend on temperature.” click here

Rising CO2 is coincident with less, not more ocean acidification

“A modest long-term (1800s-present) declining trend in ocean pH values predominantly occurred prior to 1930, or before anthropogenic CO2 emissions began rising precipitously. Since 1930, seawater pH trends have risen slightly, meaning sharply rising CO2 has been coincident with less, not more, ocean “acidification”.” click here

Great Barrier Reef corals can withstand pH variations

McCulloch M.T. et al. (2018) Boron Isotopic Systematics in Scleractinian Corals and the Role of pH Up-regulation. In: Marschall H., Foster G. (eds) Boron Isotopes. Advances in Isotope Geochemistry. Springer, Cham  https://doi.org/10.1007/978-3-319-64666-4_6

The boron isotopic composition (δ11B) of scleractinian corals has been used to track changes in seawater pH and more recently as a probe into the processes controlling bio-calcification. For corals that precipitate aragonite skeletons, up-regulation of pH appears to be a general characteristic, typically being ~0.3 to ~0.6 pH units higher than ambient seawater. The relationship between the pH of the corals calcifying-fluid (pHcf) and seawater pHT (total scale) is shown to be dependent on both physiological as well environmental factors. In laboratory experiments conducted on symbiont-bearing (zooxanthellate) corals under conditions of constant temperature and seawater pH, changes in the δ11B derived calcifying fluid pHcf is typically 1/3 to 1/2 of that of ambient seawater. Similar linear relationships are found for cold water corals that live in relatively stable, cold, deep-water environments but at significantly elevated levels of pHcf(~0.5–1 pH units above seawater), a likely response to the lower pH of their deep-sea environments. In contrast, zooxanthellae-bearing corals living in shallow-water reef environments that experience significant natural variations in temperature, light, nutrients and seawater pH, show different types of responses. For example, over seasonal time-scales Poritescorals from the Great Barrier Reef (GBR) have a large range in pHcf of ~8.3 to ~8.5, significantly greater (~×2 to ~×3) than that of reef-water (pHT ~8.01 to ~8.08), and an order of magnitude greater than that expected from ‘static’ laboratory experiments. Strong physiological controls, but of a different character, are found in corals grown in a Free Ocean Carbon Enrichment Experiment (FOCE) conducted in situ within the Heron Island lagoon (GBR). These corals exhibit near constant pHcf values regardless of external changes in temperature and seawater pH. This pattern of strong physiologically controlled ‘pHhomeostasis’, with elevated but constant pHcf has been found despite large natural seasonal variations in the pH (±0.15 pH units) of the lagoon waters, as well as the even larger super-imposed decreases in seawater pH (~0.25 pH units) designed to simulate year 2100 conditions. In natural reef environments we thus find that the processes influencing the up-regulation of pHcf in symbiont-bearing corals are subject to strong physiological controls, behaviour that is not well simulated in the current generation of aquaria-based experiments with fixed seawater pH and temperature. Conversely, cold-water corals that lack symbionts and inhabit the relatively stable deep-sea environments hold the best prospects for providing reliable reconstructions of seawater pH. Clearly, further studies utilising the δ11B-pHcfproxy combined with other DIC/carbonate-ion proxies (e.g. B/Ca), but conducted under realistic ‘natural’ conditions, are required to elucidate the processes controlling coral bio-calcification and to better understand the vulnerability of scleractinian corals to anthropogenic driven warming and ocean acidification.