Category Archives: Organic Contaminants

Organic Pollutants in Drinking Water, Eastern China

Shi P, Zhou S, Xiao H, Qiu J, Li A, Zhou Q, Pan Y, Hollert H. Toxicological and chemical insights into representative source and drinking water in eastern China. Environmental pollution 2017 Oct 17;233:35-44. doi: 10.1016/j.envpol.2017.10.033.

Drinking water safety is continuously threatened by the emergence of numerous toxic organic pollutants (TOPs) in environmental waters. In this study, an approach integrating in vitro bioassays and chemical analyses was performed to explore toxicological profiles of representative source and drinking water from waterworks of the Yangtze River (Yz), Taihu Lake (Th), and the Huaihe River (Hh) basins in eastern China. Overall, 34 of 96 TOPs were detected in all water samples, with higher concentrations in both source and drinking water samples of Hh, and pollutant profiles also differed across different river basins. Non-specific bioassays indicated that source water samples of Hh waterworks showed higher genotoxicity and mutagenicity than samples of Yz and Th. An EROD assay demonstrated dioxin-like toxicity which was detected in 5 of 7 source water samples, with toxin concentration levels ranging from 62.40 to 115.51 picograms TCDD equivalents per liter of water (eq./L). PAHs and PCBs were not the main contributors to observed dioxin-like toxicity in detected samples. All source water samples induced estrogenic activities of 8.00-129.00 nanograms 17β-estradiol eq./L, and estrogens, including 17α-ethinylestradiol and estriol, contributed 40.38-84.15% of the observed activities in examined samples. While drinking water treatments efficiently removed TOPs and their toxic effects, and estrogenic activity was still observed in drinking water samples of Hh. Altogether, this study indicated that the representative source water in eastern China, especially that found in Hh, may negatively affect human health, a finding that demonstrates an urgent requirement for advanced drinking water treatments.

Human Exposure to Perfluorochemicals

Jian JM, Guo Y, Zeng L, Liang-Ying L, Lu X, Wang F, Zeng EY. Global distribution of perfluorochemicals (PFCs) in potential human exposure source-A review. Environ Int. 2017 Aug 8;108:51-62. doi: 10.1016/j.envint.2017.07.024.

Human exposure to perfluorochemicals (PFCs) has attracted mounting attention due to their potential harmful effects. Breathing, dietary intake, and drinking are believed to be the main routes for PFC entering into human body. Thus, we profiled PFC compositions and concentrations in indoor air and dust, food, and drinking water with detailed analysis of literature data published after 2010. Concentrations of PFCs in air and dust samples collected from home, office, and vehicle were outlined. The results showed that neutral PFCs (e.g., fluorotelomer alcohols (FTOHs) and perfluorooctane sulfonamide ethanols (FOSEs)) should be given attention in addition to PFOS and PFOA. We summarized PFC concentrations in various food items, including vegetables, dairy products, beverages, eggs, meat products, fish, and shellfish. We showed that humans are subject to the dietary PFC exposure mostly through fish and shellfish consumption. Concentrations of PFCs in different drinking water samples collected from various countries were analyzed. Well water and tap water contained relatively higher PFC concentrations than other types of drinking water. Furthermore, PFC contamination in drinking water was influenced by the techniques for drinking water treatment and bottle-originating pollution.

Perfluoroalkyl Substances in the Aquatic Environment

Xiao F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature. Water research 2017 Jul 15;124:482-495. doi: 10.1016/j.watres.2017.07.024.

Poly- and perfluoroalkyl substances (PFASs) comprise a group of synthetic organic surfactants with a wide range of industrial and commercial applications. A few PFASs such as perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are now known to be ubiquitously present in the aquatic environment. They have become a global concern because of the toxicity and bioaccumulative properties. With the increasing availability of high-resolution mass spectrometers, many novel PFASs have been identified. Studies published between 2009 and 2017 have discovered 455 new PFASs (including nine fully and 446 partially fluorinated compounds), 45%, 29%, 17%, and 8% of which are anions, zwitterions, cations, and neutrals, respectively. They have been identified in natural waters, fish, sediments, wastewater, activated sludge, soils, aqueous film-forming foams, and commercial fluoropolymer surfactants. This article integrates and critically evaluates what is known about these newly identified PFASs. It discusses the different aspects of detection methodologies. It also surveys the removal of these compounds during conventional and advanced drinking-water and wastewater treatment, predicts the relevant physicochemical properties by means of four software programs, and identifies major knowledge gaps. Notably, a number of these newly identified PFASs are potential precursor compounds of PFOS and PFOA. Studies are critically needed to understand the removal and transformation of these compounds in natural and engineered environmental systems and their contribution, if any, to the secondary formation of PFOS and PFOA in these systems.

Crude oil contamination of plastic and copper drinking water pipes

Huang X, Andry S, Yaputri J, Kelly D, Ladner DA, Whelton AJ. Crude oil contamination of plastic and copper drinking water pipes. Journal of hazardous materials. 2017 Jun 17;339:385-394. doi: 10.1016/j.jhazmat.2017.06.015.

This study was conducted to determine the susceptibility of plastic (i.e., PEX, HDPE and CPVC) and copper pipes to short-term contamination by crude oil. Pipes were exposed to highly and slightly contaminated drinking water for the typical duration of Do Not Use drinking water orders. PEX pipes sorbed and desorbed the greatest amount of monoaromatic hydrocarbons (MAHs), whereas copper pipes were less susceptible to contamination. For benzene, toluene, ethylbenzene, and xylenes (BTEX) quantified in water, only benzene exceeded its health based maximum contaminant level (MCL). The MCL was exceeded for copper pipe on day 3, for CPVC pipe through day 9, and PEX and HDPE pipes through day 15. The BTEX compound concentration in water after the pipes were returned to service depended on the initial crude oil concentration, material type, and exposure duration. Total organic carbon (TOC) measurement was not helpful in detecting oil contaminated water. Except BTEX, trimethylbenzene isomers and a couple of polycyclic aromatic hydrocarbons (PAHs) with and without MCLs were also detected desorbing from PEX-A pipe. Oil contaminated water must be thoroughly characterized and pipe type will influence the ability of drinking water levels to return to safe limits.

Removal of Perfluoroalkyl Substances (PFASs) from Water

Kothawala DN, Köhler SJ, Östlund A, Wiberg K, Ahrens L. Influence of dissolved organic matter concentration and composition on the removal efficiency of perfluoroalkyl substances (PFASs) during drinking water treatment. Water research. 2017 May 24;121:320-328. doi: 10.1016/j.watres.2017.05.047.

Drinking water treatment plants (DWTPs) are constantly adapting to a host of emerging threats including the removal of micro-pollutants like perfluoroalkyl substances (PFASs), while concurrently considering how background levels of dissolved organic matter (DOM) influences their removal efficiency. Two adsorbents, namely anion exchange (AE) and granulated active carbon (GAC) have shown particular promise for PFAS removal, yet the influence of background levels of DOM remains poorly explored. Here we considered how the removal efficiency of 13 PFASs are influenced by two contrasting types of DOM at four concentrations, using both AE (Purolite A-600®) and GAC (Filtrasorb 400®). We placed emphasis on the pre-equilibrium conditions to gain better mechanistic insight into the dynamics between DOM, PFASs and adsorbents. We found AE to be very effective at removing both PFASs and DOM, while largely remaining resistant to even high levels of background DOM (8 mg carbon L-1) and surprisingly found that smaller PFASs were removed slightly more efficiently than longer chained counterparts, In contrast, PFAS removal efficiency with GAC was highly variable with PFAS chain length, often improving in the presence of DOM, but with variable response based on the type of DOM and PFAS chain length.

Occurrence and Removal of Phthalates from Wastewater

Gani KM, Tyagi VK, Kazmi AA. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: a review. Environ Sci Pollut Res Int. 2017 May 31. doi: 10.1007/s11356-017-9182-3.

Phthalates are plasticizers and are concerned environmental endocrine-disrupting compounds. Due to their extensive usage in plastic manufacturing and personal care products as well as the potential to leach out from these products, phthalates have been detected in various aquatic environments including drinking water, groundwater, surface water, and wastewater. The primary source of their environmental occurrence is the discharge of phthalate-laden wastewater and sludge. This review focuses on recent knowledge on the occurrence of phthalate in different aquatic environments and their fate in conventional and advanced wastewater treatment processes. This review also summarizes recent advances in biological removal and degradation mechanisms of phthalates, identifies knowledge gaps, and suggests future research directions.

Toxicity evaluation of organic extracts from drinking water, Guangdong Province

Guan Y, Wang X, Wong M, Sun G, An T, Guo J, Zhang G. Evaluation of Genotoxic and Mutagenic Activity of Organic Extracts from Drinking Water Sources. PloS one. 2017 Jan 26;12(1):e0170454. doi: 10.1371/journal.pone.0170454.

An increasing number of industrial, agricultural and commercial chemicals in the aquatic environment lead to various deleterious effects on organisms, which is becoming a serious global health concern. In this study, the Ames test and SOS/umu test were conducted to investigate the potential genotoxicity and mutagenicity caused by organic extracts from drinking water sources. Organic content of source water was extracted with XAD-2 resin column and organic solvents. Four doses of the extract equivalent to 0.25, 0.5, 1 and 2L of source water were tested for toxicity. All the water samples were collected from six different locations in Guangdong province. The results of the Ames test and SOS/umu test showed that all the organic extracts from the water samples could induce different levels of DNA damage and mutagenic potentials at the dose of 2 L in the absence of S9 mix, which demonstrated the existence of genotoxicity and mutagenicity. Additionally, we found that Salmonella typhimurium strain TA98 was more sensitive for the mutagen. Correlation analysis between genotoxicity, Organochlorine Pesticides (OCPs) and Polycyclic Aromatic Hydrocarbons (PAHs) showed that most individual OCPs were frame shift toxicants in drinking water sources, and there was no correlation with total OCPs and PAHs.