Category Archives: Wastewater Treatment

Fluoride contamination in Asia; a review

Krishna KumarYadav et al. Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicology and Environmental Safety Volume 182, 30 October 2019, 109362

In low concentration, fluoride is considered a necessary compound for human health. Exposure to high concentrations of fluoride is the reason for a serious disease called fluorosis. Fluorosis is categorized as Skeletal and Dental fluorosis. Several Asian countries, such as India, face contamination of water resources with fluoride. In this study, a comprehensive overview on fluoride contamination in Asian water resources has been presented. Since water contamination with fluoride in India is higher than other Asian countries, a separate section was dedicated to review published articles on fluoride contamination in this country. The status of health effects in Asian countries was another topic that was reviewed in this study. The effects of fluoride on human organs/systems such as urinary, renal, endocrine, gastrointestinal, cardiovascular, brain, and reproductive systems were another topic that was reviewed in this study. Different methods to remove fluoride from water such as reverse osmosis, electrocoagulation, nanofiltration, adsorption, ion-exchange and precipitation/coagulation were introduced in this study. Although several studies have been carried out on contamination of water resources with fluoride, the situation of water contamination with fluoride and newly developed technology to remove fluoride from water in Asian countries has not been reviewed. Therefore, this review is focused on these issues: 1) The status of fluoride contamination in Asian countries, 2) health effects of fluoride contamination in drinking water in Asia, and 3) the existing current technologies for defluoridation in Asia.

Enough monies for clean drinking water and basic sewage treatment for every country in the world wasted on falsified climate science?

“Environmentalists are destroying environmentalism. As a subset of that destruction, creators of the Intergovernmental Panel on Climate Change (IPCC) falsified science to claim that humans are causing global warming (AGW). That false science wasted trillions of dollars and disrupted millions of lives. That is enough money to provide clean drinking water and basic sewage for every country in the world.” click here

Carbon Nanotubes for Contaminant Removal from Water

Sarkar B, Mandal S, Tsang YF, Kumar P, Kim KH, Ok YS. Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review. The Science of the total environment. 2018 Jan 15;612:561-581. doi: 10.1016/j.scitotenv.2017.08.132.

The search for effective materials for environmental cleanup is a scientific and technological issue of paramount importance. Among various materials, carbon nanotubes (CNTs) possess unique physicochemical, electrical, and mechanical properties that make them suitable for potential applications as environmental adsorbents, sensors, membranes, and catalysts. Depending on the intended application and the chemical nature of the target contaminants, CNTs can be designed through specific functionalization or modification processes. Designer CNTs can remarkably enhance contaminant removal efficiency and facilitate nanomaterial recovery and regeneration. An increasing number of CNT-based materials have been used to treat diverse organic, inorganic, and biological contaminants. These success stories demonstrate their strong potential in practical applications, including wastewater purification and desalination. However, CNT-based technologies have not been broadly accepted for commercial use due to their prohibitive cost and the complex interactions of CNTs with other abiotic and biotic environmental components. This paper presents a critical review of the existing literature on the interaction of various contaminants with CNTs in water and soil environments. The preparation methods of various designer CNTs (surface functionalized and/or modified) and the functional relationships between their physicochemical characteristics and environmental uses are discussed. This review will also help to identify the research gaps that must be addressed for enhancing the commercial acceptance of CNTs in the environmental remediation industry.

Sulfaquinoxaline Transformation by Chorine and UV

Nassar R, Mokh S, Rifai A, Chamas F, Hoteit M, Al Iskandarani M. Transformation of sulfaquinoxaline by chlorine and UV light in water: kinetics and by-product identification. Environ Sci Pollut Res Int. 2017 Dec 1. doi: 10.1007/s11356-017-0814-4.

Sulfaquinoxaline (SQX) is an antimicrobial of the sulfonamide class, frequently detected at low levels in drinking and surface water as organic micropollutant. The main goal of the present study is the evaluation of SQX reactivity during chlorination and UV irradiations which are two processes mainly used in water treatment plants. The SQX transformation by chlorination and UV lights (254 nm) was investigated in purified water at common conditions used for water disinfection (pH = 7.2, temperature = 25 °C, [chlorine] = 3 mg L-1). The result shows a slow degradation of SQX during photolysis compared with chlorination process. Kinetic studies that fitted a fluence-based first-order kinetic model were used to determine the kinetic constants of SQX degradation; they were equal to 0.7 × 10-4 and 0.7 × 10-2 s-1 corresponding to the half time lives of 162 and 1.64 min during photolysis and chlorination, respectively. In the second step, seven by-products were generated during a chlorination and photo-transformation of SQX and identified using liquid chromatography with electrospray ionization and tandem mass spectrometry (MS-MS). SO2 extrusion and direct decomposition were the common degradation pathway during photolysis and chlorination. Hydroxylation and isomerization were observed during photodegradation only while electrophilic substitution was observed during chlorination process.

Organic micropollutants in wastewater treatment plants, China

Ben W, Zhu B, Yuan X, Zhang Y, Yang M, Qiang Z. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water research. 2017 Nov 30;130:38-46. doi: 10.1016/j.watres.2017.11.057.

This study investigated the occurrence, removal and risk of 42 organic micropollutants (MPs), including 30 pharmaceuticals and personal care products and 12 endocrine disrupting chemicals, in 14 municipal wastewater treatment plants (WWTPs) distributed across China. The composition profiles of different MP categories in the influent, effluent, and excess sludge were explored and the aqueous removal efficiencies of MPs were determined. Quantitative meta-analysis was performed to compare the efficacies of different wastewater treatment processes in eliminating MPs. Results indicate that different MP categories showed quite similar distributions among the studied WWTPs, with phenolic estrogenic compounds (PEs), macrolides, and fluoroquinolones being always dominant in the influent, effluent and excess sludge. Tetracyclines, bezafibrate, caffeine, steroid estrogens, and PEs showed high and stable aqueous removal efficiencies, whereas other MPs showed considerably varied aqueous removal efficiencies. Anaerobic/anoxic/oxic process combined with a moving-bed biofilm reactor achieved the highest aqueous removal of MPs among various secondary treatment processes. A combined process consisting of ultrafiltration, ozonation and ClO2 disinfection resulted in the highest removal of MPs among the tertiary treatment processes. Sulfamethoxazole, ofloxacin, ciprofloxacin, clarithromycin, erythromycin, estrone, and bisphenol A in the effluent, as well as β-estradiol 3-sulfate in the excess sludge could pose high risks. This study draws an overall picture about the current status of MPs in WWTPs across China and provides useful information for better control of the risks associated with MPs.


A Model for Developing Water and Sanitation Capacity

Occurrence and Removal of Phthalates from Wastewater

Gani KM, Tyagi VK, Kazmi AA. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: a review. Environ Sci Pollut Res Int. 2017 May 31. doi: 10.1007/s11356-017-9182-3.

Phthalates are plasticizers and are concerned environmental endocrine-disrupting compounds. Due to their extensive usage in plastic manufacturing and personal care products as well as the potential to leach out from these products, phthalates have been detected in various aquatic environments including drinking water, groundwater, surface water, and wastewater. The primary source of their environmental occurrence is the discharge of phthalate-laden wastewater and sludge. This review focuses on recent knowledge on the occurrence of phthalate in different aquatic environments and their fate in conventional and advanced wastewater treatment processes. This review also summarizes recent advances in biological removal and degradation mechanisms of phthalates, identifies knowledge gaps, and suggests future research directions.