Tag Archives: Canada

Canadian Wind Energy is Unsustainable

“TransAlta Corp. said Tuesday the blades on 57 turbines at its Cowley Ridge facility near Pincher Creek have already been halted and the towers are to be toppled and recycled for scrap metal this spring. The company inherited the now-obsolete facility, built between 1993 and 1994, as part of its $1.6-billion hostile takeover of Calgary-based Canadian Hydro Developers Inc. in 2009.” click here

Does Global Warming Increase Hudson Bay Sea Ice, or Does it Decrease Hudson Bay Sea Ice?

Does global warming increase or decrease Hudson Bay Sea ice? I’m just wondering….. click here

British Columbia’s Carbon Tax a Failure

“Whether you look at greenhouse gas emissions or economic statistics, B.C. carbon tax has tanked.click here

The Canadian Climate Hustle

“Friends of Science Society says Canadians have been “Climate Hustled” into the official ratification of the Paris COP-21 climate change agreement, as reported by the National Observer, Oct. 5, 2016. Undeterred, Friends of Science have launched a new ClimateChange101.ca – a bilingual, plain language website and video billboard in downtown Montreal.” click here

Disinfection Byproduct Formation During Biofiltration

Delatolla R, Seguin C, Springthorpe S, Gorman E, Campbell A, Douglas I. Disinfection byproduct formation during biofiltration cycle: Implications for drinking water production. Chemosphere 2015 Oct; Vol. 136, pp. 190-7.

The goal of this study was to investigate the potential of biofiltration to reduce the formation potential of disinfection byproducts (DBPs). Particularly, the work investigates the effect of the duration of the filter cycle on the formation potential of total trihalomethanes (TTHM) and five species of haloacetic acids (HAA5), dissolved oxygen (DO), organic carbon, nitrogen and total phosphorous concentrations along with biofilm coverage of the filter media and biomass viability of the attached cells. The study was conducted on a full-scale biologically active filter, with anthracite and sand media, at the Britannia water treatment plant (WTP), located in Ottawa, Ontario, Canada. The formation potential of both TTHMs and HAA5s decreased due to biofiltration. However the lowest formation potentials for both groups of DBPs and or their precursors were observed immediately following a backwash event. Hence, the highest percent removal of DBPs was observed during the early stages of the biofiltration cycle, which suggests that a higher frequency of backwashing will reduce the formation of DBPs. Variable pressure scanning electron microscopy (VPSEM) analysis shows that biofilm coverage of anthracite and sand media increases as the filtration cycle progressed, while biomass viability analysis demonstrates that the percentage of cells attached to the anthracite and sand media also increases as the filtration cycle progresses. These results suggest that the development and growth of biofilm on the filters increases the DPB formation potential.

Extreme Winter is Normal for Canada

“Now climate scientists at Environment and Climate Change Canada who have been studying the phenomenon to see whether something unusual was behind it have an answer: Such an extreme winter is within the range of normal for Canada.” click here

Nitenpyram Degradation in Finished Drinking Water

Noestheden M, Roberts S, Hao C. Nitenpyram degradation in finished drinking water. Rapid Communication Mass Spectrom. 2016 Jul 15;30(13):1653-61. doi: 10.1002/rcm.7581.

RATIONALE: Neonicotinoid pesticides and their metabolites have been indicated as contributing factors in the decline of honey bee colonies. A thorough understanding of neonicotinoid toxicity requires knowledge of their metabolites and environmental breakdown products. This work investigated the rapid degradation of the neonicotinoid nitenpyram in finished drinking water.

METHODS: Nitenpyram reaction products were characterized using liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOFMS). A software algorithm that compared degraded and control samples was utilized to facilitate efficient data reduction. Fragmentation pathways for six reaction products and nitenpyram were proposed using predictive software and manual product ion analysis.

RESULTS: This study showed that nitenpyram degradation in unpreserved finished drinking water was likely the result of oxidation, hydrolysis and reaction with Cl2 . Structures for six nitenpyram reaction products were proposed that suggest the C9/C11 olefin as the key reactive site.

CONCLUSIONS: Similarities between the identified nitenpyram reaction products and imidacloprid metabolites highlight the importance of this study, as the toxicity of neonicotinoids to pollinators has been linked to their metabolites. Based on the proposed reaction mechanisms, the identified nitenpyram reaction products in finished drinking water could also be present in the environment and water treatment facilities. As such, identifying these degradation products will aid in evaluating the environmental impact of neonicotinoid pesticides.