Tag Archives: China

Radon in Groundwater, 12 Cities, China

Wu Y, Cui H, Liu J, Shang B, Su X. Radon Concentrations in Underground Drinking Water in Parts of Cities, China. Radiation protection dosimetry. 2017 Aug 31:1-5. doi: 10.1093/rpd/ncx121.

222Rn concentrations in underground drinking water samples in 12 cities from seven provinces (municipalities), China were determined by using a continuous radon monitor with air-water exchanger. A total of 73 underground water samples were collected. The observed radon levels were in a range of 1.0-63.8 Bq l-1, with a mean of 11.8 Bq l-1. The annual effective dose from inhalation of water-borne radon for average radon content in underground water was 72.6 μSv and for maximal observed radon concentration in underground water the corresponding dose was 393.8 μSv. The dose contribution of inhalation dose from water-borne radon should be paid attention in some granitic area.

China’s Climate Change Religion

“China has stepped up its efforts to promote sham green narratives, while simultaneously waging a brutal crackdown against Christianity and other faiths.” click here

Cryptosporidium Infection in Cattle, China

Gong C, Cao XF, Deng L, Li W, Huang XM, Lan JC, Xiao QC, Zhong ZJ, Feng F, Zhang Y, Wang WB, Guo P, Wu KJ, Peng GN. Epidemiology of Cryptosporidium infection in cattle in China: a review. Parasite. 2017;24:1. doi: 10.1051/parasite/2017001.

The present review discusses the findings of cryptosporidiosis research conducted in cattle in China and highlights the currently available information on Cryptosporidium epidemiology, genetic diversity, and distribution in China, which is critical to understanding the economic and public health importance of cryptosporidiosis transmission in cattle. To date, 10 Cryptosporidium species have been detected in cattle in China, with an overall infection rate of 11.9%. The highest rate of infection (19.5%) was observed in preweaned calves, followed by that in juveniles (10.69%), postweaned juveniles (9.0%), and adult cattle (4.94%). The dominant species were C. parvum in preweaned calves and C. andersoni in postweaned, juvenile, and adult cattle. Zoonotic Cryptosporidium species (C. parvum and C. hominis) were found in cattle, indicating the possibility of transmission between humans and cattle. Different cattle breeds had significant differences in the prevalence rate and species of Cryptosporidium. This review demonstrates an age-associated, breed-associated, and geographic-related occurrence of Cryptosporidium and provides references for further understanding of the epidemiological characteristics, and for preventing and controlling the disease.

C. hominis, C. parvum dominant in China

Feng Y, Xiao L. Molecular Epidemiology of Cryptosporidiosis in China. Frontiers in microbiology. 2017 Sep 6;8:1701. doi: 10.3389/fmicb.2017.01701.

Molecular epidemiology of cryptosporidiosis is an active research area in China. The use of genotyping and subtyping tools in prevalence studies has led to the identification of unique characteristics of Cryptosporidium infections in humans and animals. Human cryptosporidiosis in China is exemplified by the high diversity of Cryptosporidium spp. at species and subtype levels, with dominant C. hominis and C. parvum subtypes being rarely detected in other countries. Similarly, preweaned dairy calves, lambs, and goat kids are mostly infected with non-pathogenic Cryptosporidium species (C. bovis in calves and C. xiaoi in lambs and goat kids), with C. parvum starting to appear in dairy calves as a consequence of concentrated animal feeding operations. The latter Cryptosporidium species is dominated by IId subtypes, with IIa subtypes largely absent from the country. Unlike elsewhere, rodents in China appear to be commonly infected with C. parvum IId subtypes, with identical subtypes being found in these animals, calves, other livestock, and humans. In addition to cattle, pigs and chickens appear to be significant contributors to Cryptosporidium contamination in drinking water sources, as reflected by the frequent detection of C. suis, C. baileyi, and C. meleagridis in water samples. Chinese scientists have also made significant contributions to the development of new molecular epidemiological tools for Cryptosporidium spp. and improvements in our understanding of the mechanism involved in the emergence of hyper-transmissible and virulent C. hominis and C. parvum subtypes. Despite this progress, coordinated research efforts should be made to address changes in Cryptosporidium transmission because of rapid economic development in China and to prevent the introduction and spread of virulent and zoonotic Cryptosporidium species and subtypes in farm animals.

Fuzzy Health Risk Assessment as a Screening Tool

Li F, Qiu Z, Zhang J, Liu C, Cai Y, Xiao M. Spatial Distribution and Fuzzy Health Risk Assessment of Trace Elements in Surface Water from Honghu Lake. International journal of environmental research and public health. 2017 Sep 4;14(9). pii: E1011. doi: 10.3390/ijerph14091011.

Previous studies revealed that Honghu Lake was polluted by trace elements due to anthropogenic activities. This study investigated the spatial distribution of trace elements in Honghu Lake, and identified the major pollutants and control areas based on the fuzzy health risk assessment at screening level. The mean total content of trace elements in surface water decreased in the order of Zn (18.04 μg/L) > Pb (3.42 μg/L) > Cu (3.09 μg/L) > Cr (1.63 μg/L) > As (0.99 μg/L) > Cd (0.14 μg/L), within limits of Drinking Water Guidelines. The results of fuzzy health risk assessment indicated that there was no obvious non-carcinogenic risk to human health, while carcinogenic risk was observed in descending order of As > Cr > Cd > Pb. As was regarded to have the highest carcinogenic risk among selected trace elements because it generally accounted for 64% of integrated carcinogenic risk. Potential carcinogenic risk of trace elements in each sampling site was approximately at medium risk level (10-5 to 10-4). The areas in the south (S4, S13, and S16) and northeast (S8, S18, and S19) of Honghu Lake were regarded as the risk priority control areas. However, the corresponding maximum memberships of integrated carcinogenic risk in S1, S3, S10-S13, S15, and S18 were of relatively low credibility (50-60%), and may mislead the decision-makers in identifying the risk priority areas. Results of fuzzy assessment presented the subordinate grade and corresponding reliability of risk, and provided more full-scale results for decision-makers, which made up for the deficiency of certainty assessment to a certain extent.

No Evidence of “Climate Change” in Surface Temperature Record, Suzhou, China

Recently I visited Suzhou, China. Nothing like a refreshing cool mist at the Humble Administrator’s Garden.

I was curious about the temperature record for this city. Take a look at this plot of GHCND average daily temperatures for Suzhou, China.

Maybe I’m missing something. Can someone show me any evidence in these data of “climate change” beyond natural variability over this ~40 year period? Looks to me like hot (and humid) is the norm in the summer within a wide band of natural variability.

20th Century Temperatures Not Unprecedented, China

Quansheng Ge, Haolong Liu, Xiang Ma, Jingyun Zheng, Zhixin Hao. Characteristics of temperature change in China over the last 2000 years and spatial patterns of dryness/wetness during cold and warm periods. Advances in Atmospheric Sciences. August 2017, Volume 34, Issue 8, pp 941–951

This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50–70-yr, 100–120-yr, and 200–250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3°C and 0.7°C, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially cold periods, which correspond approximately to sunspot minima. The most rapid warming in China occurred over AD 1870–2000, at a rate of 0.56° ± 0.42°C (100 yr)−1; however, temperatures recorded in the 20th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981–1100 and AD 1201–70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial warm periods illustrate a tripole pattern: dry south of 25°N, wet from 25°–30°N, and dry to the north of 30°N. However, for all centennial cold periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20th century warming can primarily be attributed to a mega El Ni˜no–Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/cold conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.