Tag Archives: Climate Models

Empirical Planetary Temperature Model Challenges “Greenhouse Effect” Dogma

Nikolov N, Zeller K (2017) New Insights on the Physical Nature of the Atmospheric Greenhouse Effect Deduced from an Empirical Planetary Temperature Model. Environ Pollut Climate Change 1:112.s

A recent study has revealed that the Earth’s natural atmospheric greenhouse effect is around 90 K or about 2.7 times stronger than assumed for the past 40 years. A thermal enhancement of such a magnitude cannot be explained with the observed amount of outgoing infrared long-wave radiation absorbed by the atmosphere (i.e. ≈ 158 W m-2), thus requiring a re-examination of the underlying Greenhouse theory. We present here a new investigation into the physical nature of the atmospheric thermal effect using a novel empirical approach toward predicting the Global Mean Annual near-surface equilibrium Temperature (GMAT) of rocky planets with diverse atmospheres. Our method utilizes Dimensional Analysis (DA) applied to a vetted set of observed data from six celestial bodies representing a broad range of physical environments in our Solar System, i.e. Venus, Earth, the Moon, Mars, Titan (a moon of Saturn), and Triton (a moon of Neptune). Twelve relationships (models) suggested by DA are explored via non-linear regression analyses that involve dimensionless products comprised of solar irradiance, greenhouse-gas partial pressure/density and total atmospheric pressure/density as forcing variables, and two temperature ratios as dependent variables. One non-linear regression model is found to statistically outperform the rest by a wide margin. Our analysis revealed that GMATs of rocky planets with tangible atmospheres and a negligible geothermal surface heating can accurately be predicted over a broad range of conditions using only two forcing variables: top-of-the-atmosphere solar irradiance and total surface atmospheric pressure. The hereto discovered interplanetary pressure-temperature relationship is shown to be statistically robust while describing a smooth physical continuum without climatic tipping points. This continuum fully explains the recently discovered 90 K thermal effect of Earth’s atmosphere. The new model displays characteristics of an emergent macro-level thermodynamic relationship heretofore unbeknown to science that has important theoretical implications. A key entailment from the model is that the atmospheric ‘greenhouse effect’ currently viewed as a radiative phenomenon is in fact an adiabatic (pressure-induced) thermal enhancement analogous to compression heating and independent of atmospheric composition. Consequently, the global down-welling long-wave flux presently assumed to drive Earth’s surface warming appears to be a product of the air temperature set by solar heating and atmospheric pressure. In other words, the so-called ‘greenhouse back radiation’ is globally a result of the atmospheric thermal effect rather than a cause for it. Our empirical model has also fundamental implications for the role of oceans, water vapour, and planetary albedo in global climate. Since produced by a rigorous attempt to describe planetary temperatures in the context of a cosmic continuum using an objective analysis of vetted observations from across the Solar System, these findings call for a paradigm shift in our understanding of the atmospheric ‘greenhouse effect’ as a fundamental property of climate.

Climate Scientist Admits Model Projections Too High

click here

Natural Factors Dominate Equilibrium Climate Sensitivity Estimated at 0.6C

John Abbot. Jennifer Marohasy. The application of machine learning for evaluating anthropogenic versus natural climate change. GeoResJ, Volume 14, December 2017, Pages 36-46.

Time-series profiles derived from temperature proxies such as tree rings can provide information about past climate. Signal analysis was undertaken of six such datasets, and the resulting component sine waves used as input to an artificial neural network (ANN), a form of machine learning. By optimizing spectral features of the component sine waves, such as periodicity, amplitude and phase, the original temperature profiles were approximately simulated for the late Holocene period to 1830 CE. The ANN models were then used to generate projections of temperatures through the 20th century. The largest deviation between the ANN projections and measured temperatures for six geographically distinct regions was approximately 0.2 °C, and from this an Equilibrium Climate Sensitivity (ECS) of approximately 0.6 °C was estimated. This is considerably less than estimates from the General Circulation Models (GCMs) used by the Intergovernmental Panel on Climate Change (IPCC), and similar to estimates from spectroscopic methods.

Alarming Climate Model Predictions are Complete Nonsense, Speculations at Best

New studies reported by CNN (here) are simply off-target. Why? Because they are based on unreliable climate models that rely on representations, not physics. Consider the graph below where the speculations of over 100 model runs are compared to actual temperature measurements.

Global Climate Models do not reproduce multidecadal climate variations

Kravtsov, S. (2017), Pronounced differences between observed and CMIP5-simulated multidecadal climate variability in the twentieth century, Geophys. Res. Lett., 44, 5749–5757, doi:10.1002/2017GL074016.

Identification and dynamical attribution of multidecadal climate undulations to either variations in external forcings or to internal sources is one of the most important topics of modern climate science, especially in conjunction with the issue of human-induced global warming. Here we utilize ensembles of twentieth century climate simulations to isolate the forced signal and residual internal variability in a network of observed and modeled climate indices. The observed internal variability so estimated exhibits a pronounced multidecadal mode with a distinctive spatiotemporal signature, which is altogether absent in model simulations. This single mode explains a major fraction of model-data differences over the entire climate index network considered; it may reflect either biases in the models’ forced response or models’ lack of requisite internal dynamics, or a combination of both.

 

Credibility of Climate Scientists Called into Question

“One of the most popular alarmist arguments is likening the “consensus climate scientists”  to medical doctors.  For example, this essay on “climate denial” from Andrew Winston at medium.com took part in the bashing of recently hired climate skeptic Brett Stevens at the NYT.” click here for WUWT

Southern Hemisphere Climate Data Made Up to Fill Gaps

According to overseers of the long-term instrumental temperature data, the Southern Hemisphere record is “mostly made up”.  This is due to an extremely limited number of available measurements both historically and even presently from the south pole to the equatorial regions. click here for the notrickszone