Tag Archives: environmental protection

Wind turbine installations destroy critical habitat

“And according top Rainer Hülsheger of the state association for natural landscape protection: “At least 12,000 square meters of forest needed to be cleared in order to build one wind turbine alone.” “ click here

Polystyrene oxidized, converted by sunlight to CO2 and water

Collin P. Ward, Cassia, J. Armstrong, Anna N. Walsh, Julia H. Jackson, and Christopher M. Reddy. Sunlight Converts Polystyrene to Carbon Dioxide and Dissolved Organic Carbon. Environ. Sci. Technol. Lett. XXXX, XXX, XXX−XXX DOI: 10.1021/acs.estlett.9b00532 

Numerous international governmental agencies that steer policy assume that polystyrene persists in the environment for millennia. Here, we show that polystyrene is completely photochemically oxidized to carbon dioxide and partially photochemically oxidized to dissolved organic carbon. Lifetimes of complete and partial photochemical oxidation are estimated to occur on centennial and decadal time scales, respectively. These lifetimes are orders of magnitude faster than biological respiration of polystyrene and thus challenge the prevailing assumption that polystyrene persists in the environment for millennia. Additives disproportionately altered the relative susceptibility to complete and partial photochemical oxidation of polystyrene and accelerated breakdown by shifting light absorbance and reactivity to longer wavelengths. Polystyrene photochemical oxidation increased approximately 25% with a 10 °C increase in temperature, indicating that temperature is unlikely to be a primary driver of photochemical oxidation rates. Collectively, sunlight exposure appears to be a governing control of the environmental persistence of polystyrene, and thus, photochemical loss terms need to be included in mass balance studies on the environmental fate of polystyrene. The experimental framework presented herein should be applied to a diverse array of polymers and formulations to establish how general these results are for other plastics in the environment.

Ocean debris originates from ships, not from land

Peter G. Ryan, Ben J. Dilley, Robert A. Ronconi, and Maëlle Connan. Rapid increase in Asian bottles in the South Atlantic Ocean indicates major debris inputs from ships, PNAS, October 15, 2019, 116(42), 20892-20897; https://doi.org/10.1073/pnas.1909816116

Most plastic debris floating at sea is thought to come from land-based sources, but there is little direct evidence to support this assumption. Since 1984, stranded debris has been recorded along the west coast of Inaccessible Island, a remote, uninhabited island in the central South Atlantic Ocean that has a very high macrodebris load (∼5 kg·m−1). Plastic drink bottles show the fastest growth rate, increasing at 15% per year compared with 7% per year for other debris types. In 2018, we examined 2,580 plastic bottles and other containers (one-third of all debris items) that had accumulated on the coast, and a further 174 bottles that washed ashore during regular monitoring over the course of 72 d (equivalent to 800 bottles·km−1·y−1). The oldest container was a high-density polyethylene canister made in 1971, but most were polyethylene terephthalate drink bottles of recent manufacture. Of the bottles that washed up during our survey, 90% were date-stamped within 2 y of stranding. In the 1980s, two-thirds of bottles derived from South America, carried 3,000 km by the west wind drift. By 2009, Asia had surpassed South America as the major source of bottles, and by 2018, Asian bottles comprised 73% of accumulated and 83% of newly arrived bottles, with most made in China. The rapid growth in Asian debris, mainly from China, coupled with the recent manufacture of these items, indicates that ships are responsible for most of the bottles floating in the central South Atlantic Ocean, in contravention of International Convention for the Prevention of Pollution from Ships regulations.

Humanity is not destroying the environment

“I resent the one-sided mis-characterization of humanity as “destroyers of our environment”. Humans certainly had negative impacts on most ecosystems. However, in contrast to a recent United Nations report insinuating we are threatening one million species with extinction, humans have been working hard to restore nature and prevent further extinctions. Most endangered species are still staggering from disruptions initiated centuries ago. But now humans are correcting past mistakes.” click here

“Environmental protection and economic prosperity go hand in hand.”

“Environmental protection and economic prosperity go hand in hand.  A strong market economy is essential to protecting our critical natural resources and fostering a legacy of conservation.” click here and here.