Tag Archives: herbicides

Agricultural Compounds and Birth Defects Revisited

Reviews of this type are published every so often to draw attention to a problem that has been studied for many years from several different perspectives. Such studies can paint an alarming picture. But closer scrutiny usually reveals methodological limitations that call into question the validity of the findings. So the outcome is usually a recommendation for more research.

Brender JD, Weyer PJ. Agricultural Compounds in Water and Birth Defects. Current Environmental Health Reports. 2016 Mar 23.

Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

Risks Posed by Glyphosate-Based Herbicides

Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Hansen M, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, Vom Saal FS, Welshons WV, Benbrook CM Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environmental Health 2016 Feb 17;15(1):19. doi: 10.1186/s12940-016-0117-0.

The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.

Regulation of Plant Protection Product Metabolites; EU

Laabs V, Leake C, Botham P, Melching-Kollmuss S. Regulation of non-relevant metabolites of plant protection products in drinking and groundwater in the EU: Current status and way forward. Regulatory toxicology and pharmacology 2015 Jul 17. pii: S0273-2300(15)30003-9. doi: 10.1016/j.yrtph.2015.06.023.

Non-relevant metabolites are defined in the EU regulation for plant protection product authorization and a detailed definition of non-relevant metabolites is given in an EU Commission DG Sanco (now DG SANTE – Health and Food Safety) guidance document. However, in water legislation at EU and member state level non-relevant metabolites of pesticides are either not specifically regulated or diverse threshold values are applied. Based on their inherent properties, non-relevant metabolites should be regulated based on substance-specific and toxicity-based limit values in drinking and groundwater like other anthropogenic chemicals. Yet, if a general limit value for non-relevant metabolites in drinking and groundwater is favored, an application of a Threshold of Toxicological Concern (TTC) concept for Cramer class III compounds leads to a threshold value of 4.5 ╬╝g L-1. This general value is exemplarily shown to be protective for non-relevant metabolites, based on individual drinking water limit values derived for a set of 56 non-relevant metabolites. A consistent definition of non-relevant metabolites of plant protection products, as well as their uniform regulation in drinking and groundwater in the EU, is important to achieve legal clarity for all stakeholders and to establish planning security for development of plant protection products for the European market.

Herbicide Exposure and Chronic Kidney Disease

Jayasumana C, Paranagama P, Agampodi S, Wijewardane C, Gunatilake S, Siribaddana S. Drinking well water and occupational exposure to Herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environmental Health. 2015 Jan 18;14(1):6.

BACKGROUND: The chronic kidney disease of unknown etiology (CKDu) among paddy farmers in was first reported in 1994 and has now become most important public health issue in dry zone of Sri Lanka. The objective was to identify risk factors associated with the epidemic in an area with high prevalence.

METHODS: A case control study was carried out in Padavi-Sripura hospital in Trincomalee district. CKDu patients were defined using health ministry criteria. All confirmed cases (N = 125) fulfilling the entry criteria were recruited to the study. Control selection (N = 180) was done from people visiting the hospital for CKDu screening. Socio-demographic and data related to usage of applying pesticides and fertilizers were studied. Drinking water was also analyzed using ICP-MS and ELISA to determine the levels of metals and glyphosate.

RESULTS: Majority of patients were farmers (N = 107, 85.6%) and were educated up to ‘Ordinary Level’ (N = 92, 73.6%). We specifically analyzed for the effect modification of, farming by sex, which showed a significantly higher risk for male farmers with OR 4.69 (95% CI 1.06-20.69) in comparison to their female counterparts. In the multivariable analysis the highest risk for CKDu was observed among participants who drank well water (OR 2.52, 95% CI 1.12-5.70) and had history of drinking water from an abandoned well (OR 5.43, 95% CI 2.88-10.26) and spray glyphosate (OR 5.12, 95% CI 2.33-11.26) as a pesticide. Water analysis showed significantly higher amount of hardness, electrical conductivity and glyphosate levels in abandoned wells. In addition Ca, Mg, Ba, Sr, Fe, Ti, V and Sr were high in abandoned wells. Surface water from reservoirs in the endemic area also showed contamination with glyphosate but at a much lower level. Glyphosate was not seen in water samples in the Colombo district.

CONCLUSION: The current study strongly favors the hypothesis that CKDu epidemic among farmers in dry zone of Sri Lanka is associated with, history of drinking water from a well that was abandoned. In addition, it is associated with spraying glyphosate and other pesticides in paddy fields. Farmers do not use personnel protective equipments and wears scanty clothing due to heat when spraying pesticides.

Click here for paper (fee).