Tag Archives: North Carolina

Solar power fails to deliver on advocate claims

“After committing $2 billion in tax credits, and more than $1 billion in electricity overpayments for solar power, we now learn from Duke that nitrogen oxides have actually increased, and that CO2 may be headed in the wrong direction,” click here

Duke University pays big fine for obtaining scientific research money fraudulently

“Duke University just paid out $112,500,000 in fines for obtaining scientific research money fraudulently.” click here

Hurricane Florence very natural, not “climate change”

“Although it is still 3-4 days away, rapidly strengthening Hurricane Florence is increasing the threat of a major hurricane landfall somewhere within 120 miles or so of Wilmington, NC. If it reaches that area as a Cat 4 storm, the damage produced will be extensive, likely amounting to tens of billions of dollars.” click here

Wind energy is not economically sustainable

Duke Energy Carolinas has quietly abandoned plans for purchasing up to 500 megawatts worth of wind power capacity for the Carolinas by 2022 after finding the initial bids from producers “not economically attractive.” click here

Point-of-use filters as a screening method for suspect compounds in drinking water

Newton SR, McMahen RL, Sobus JR, Mansouri K, Williams AJ, McEachran AD, Strynar MJ.
Suspect screening and non-targeted analysis of drinking water using point-of-use filters.Environ Pollut. 2017 Nov 25;234:297-306. doi: 10.1016/j.envpol.2017.11.033.

Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully characterize the drinking water exposome, point-of-use water filtration devices (Brita® filters) were employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina homes. A suspect screening analysis was performed by matching high resolution mass spectra of unknown features to molecular formulas from EPA’s DSSTox database. Candidate compounds with those formulas were retrieved from the EPA’s CompTox Chemistry Dashboard, a recently developed data hub for approximately 720,000 compounds. To prioritize compounds into those most relevant for human health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as well as exposure estimates from EPA’s ExpoCast program, were used in conjunction with sample detection frequency and abundance to calculate a “ToxPi” score for each candidate compound. From ∼15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring, highlighting major gaps in our understanding of drinking water exposures. General product-use categories from EPA’s CPCat database revealed that several of the high priority chemicals are used in industrial processes, indicating the drinking water in central North Carolina may be impacted by local industries.

Improving Private-Well Water Quality, North Carolina

MacDonald Gibson J, Pieper KJ. Strategies to Improve Private-Well Water Quality: A North Carolina Perspective. Environmental health perspectives. 2017 Jul 7;125(7):076001. doi: 10.1289/EHP890.

BACKGROUND: Evidence suggests that the 44.5 million U.S. residents drawing their drinking water from private wells face higher risks of waterborne contaminant exposure than those served by regulated community water supplies. Among U.S. states, North Carolina (N.C.) has the second-largest population relying on private wells, making it a useful microcosm to study challenges to maintaining private-well water quality.

OBJECTIVES: This paper summarizes recommendations from a two-day summit to identify options to improve drinking-water quality for N.C. residents served by private wells.

METHODS: The Research Triangle Environmental Health Collaborative invited 111 participants with knowledge of private-well water challenges to attend the Summit. Participants worked in small groups that focused on specific aspects and reconvened in plenary sessions to formulate consensus recommendations.

DISCUSSION: Summit participants highlighted four main barriers to ensuring safe water for residents currently relying on private wells: (1) a database of private well locations is unavailable; (2) racial disparities have perpetuated reliance on private wells in some urbanized areas; (3) many private-well users lack information or resources to monitor and maintain their wells; and (4) private-well support programs are fragmented and lack sufficient resources. The Summit produced 10 consensus recommendations for ways to overcome these barriers.

CONCLUSIONS: The Summit recommendations, if undertaken, could improve the health of North Carolinians facing elevated risks of exposure to waterborne contaminants because of their reliance on inadequately monitored and maintained private wells. Because many of the challenges in N.C. are common nationwide, these recommendations could serve as models for other states.

Caffeine as an Ambient Water Quality Indicator

Spence PL. Using Caffeine as a Water Quality Indicator in the Ambient Monitoring Program for Third Fork Creek Watershed, Durham, North Carolina. Environmental health insights. 2015 Jun 25;9(Suppl 2):29-34. doi: 10.4137/EHI.S19588.

Caffeine has been suggested as a chemical indicator for domestic wastewater in freshwater systems, although it is not included in water quality monitoring programs. The Third Fork Creek watershed in Durham, NC, is highly urbanized, with a history of receiving untreated wastewater from leaking and overflowing sanitary sewers. The poor water quality originating in the Third Fork Creek watershed threatens its intended uses and jeopardizes drinking water, aquatic life, and recreational activities provided by Jordan Lake. Organic waste contaminants have been detected in both Third Fork Creek watershed and Jordan Lake; however, the sampling periods were temporary, resulting in a few samples collected during nonstorm periods. It is recommended that (1) the concentration of caffeine and other organic waste contaminants are determined during storm and nonstorm periods and (2) caffeine is monitored regularly with traditional water quality indicators to evaluate the health of Third Fork Creek watershed.