Tag Archives: radionuclides

Analysis of polonium, plutonium, americium and uranium in drinking water

Lemons, B.; Khaing, H.; Ward, A.; Thakur, P. A rapid method for the sequential separation of polonium, plutonium, americium and uranium in drinking water. Applied Radiation and Isotopes June 2018 136:10-17

A new sequential separation method for the determination of polonium and actinides (Pu, Am and U) in drinking water samples has been developed that can be used for emergency response or routine water analyses. For the first time, the application of TEVA chromatography column in the sequential separation of polonium and plutonium has been studied. This method utilizes a rapid Fe+3 co-precipitation step to remove matrix interferences, followed by plutonium oxidation state adjustment to Pu4+ and an incubation period of ~ 1 h at 50–60 °C to allow Po2+ to oxidize to Po4+. The polonium and plutonium were then separated on a TEVA column, while separation of americium from uranium was performed on a TRU column. After separation, polonium was micro-precipitated with copper sulfide (CuS), while actinides were micro co-precipitated using neodymium fluoride (NdF3) for counting by the alpha spectrometry. The method is simple, robust and can be performed quickly with excellent removal of interferences, high chemical recovery and very good alpha peak resolution. The efficiency and reliability of the procedures were tested by using spiked samples. The effect of several transition metals (Cu2+, Pb2+, Fe3+, Fe2+, and Ni2+) on the performance of this method were also assessed to evaluate the potential matrix effects. Studies indicate that presence of up to 25 mg of these cations in the samples had no adverse effect on the recovery or the resolution of polonium alpha peaks.

Assessment of Water Treatment for Radium Removal and NORM Formation, Estonia

Hill L, Suursoo S, Kiisk M, Jantsikene A, Nilb N, Munter R, Realo E, Koch R, Putk K, Leier M, Vaasma T, Isakar K. Long-term monitoring of water treatment technology designed for radium removal-removal efficiencies and NORM formation. J Radiol Prot. 2017 Dec 6;38(1):1-24. doi: 10.1088/1361-6498/aa97f2.

A drinking water treatment plant in Viimsi, Estonia, was monitored over three years for iron, manganese, radium-226, radium-228, as well as their daughter nuclides, in order to determine the efficiency of the treatment process, gain an insight into the removal mechanisms and interactions between radium, iron, and manganese, and assess the overall longevity and performance of the technology along with the possible build-up of NORM in the treatment process. During the study, samples were collected from raw water, first and second stage filtrate, consumer water, backwash water and filter materials. The results show consistent removal efficiency for iron and manganese, as well as an average of over 85% removal for radium with a slight decline over time. The backwash process has been optimised for maximum radium removal from the filters, while keeping concentrations in the backwash water below exemption levels. However, the accumulation of radium and thorium occurs in the filter material, exceeding exemption levels in the top layer of the filter columns in less than a year. By the end of the observation period, activity concentrations in the top layer of the columns were above 30 000 Bq kg-1 for Ra-226 and Ra-228, and around 15 000 Bq kg-1 for Th-228. Radionuclides are not homogenously distributed in the filter columns. In order to estimate the average activity concentrations in the filter media, the height distribution of radionuclides has to be accounted for. Two years and two months after commissioning the treatment plant, the average activity concentrations of Ra isotopes in the filter columns were in the range 10 000 Bq kg-1, while Th-228 activity concentration was roughly 3500 Bq kg-1.

Radiocesium in Cistern Waters, Croatian Coast

Franic Z, Marovic G, Petrinec B, Branica G. Post-Chernobyl Investigations of Radiocesium Activity Concentrations in Cistern Waters along the Croatian Coast of the Adriatic Sea. Health physics. 2017 Sep;113(3):167-174. doi: 10.1097/HP.0000000000000685.

The results of long-term investigations into the post-Chernobyl period of radiocesium activity concentrations in cistern waters along the Croatian coast of the Adriatic Sea are presented. The Cs activity concentrations in cistern water samples were in excellent correlation with fallout activities. The observed mean residence time of Cs in cistern waters was estimated to be 6.9 ± 0.8 y. Cesium-137 radioecological sensitivity for the period 1988-1997 for cistern water was estimated to be 1.17 × 10 Bq y L/(Bq m). The annual total effective dose incurred by Cs and Cs that a hypothetical adult person drinking 1 L of cistern water per day would receive was estimated to be < 1 mSv in 1986, decreasing to 3.6 μSv in 2015.

Protective Action and Planning Guidance for Radiological Incidents

img-1

img-2

Oxidatively Modified Carbon (OMC) Removes Radioactive Elements

Artur Khannanov, Vadim V. Nekljudov, Airat Kiiamov, Ayrat M. Dimiev. Oxidatively modified carbon as efficient material for removing radionuclides from water. Carbon, Volume 115, May 2017, Pages 394–401http://dx.doi.org/10.1016/j.carbon.2017.01.025

There is a constant need to develop advantageous materials for removing radioactive waste from aqueous systems. Here we propose a new carbon-based material prepared by oxidative treatment of various natural carbon sources. The as-prepared oxidatively modified carbon (OMC) has an oxygen-rich surface, and retains its particulate granular texture. It has relatively low cost and can be used in traditional filtration columns. The sorption ability of OMC toward several metal cations is demonstrated. It is especially efficient toward Cs+ cations, the species that are among the most difficult to remove from the waters at the Fukushima nuclear plant. 

Polonium-210 in Drinking Water

Seiler R. 210Po in drinking water, its potential health effects, and inadequacy of the gross alpha activity MCL. The Science of the Total Environment. 2016 Jun 28. pii: S0048-9697(16)30974-3. doi: 10.1016/j.scitotenv.2016.05.044.

Polonium-210 (210Po) is a naturally-occurring, carcinogenic member of the 238U decay series and the granddaughter of 210Pb. It has a half life of 138.4days and is rarely found in drinking water at levels exceeding 5mBq/L because it strongly binds to aquifer sediment. When the current US Maximum Contaminant Level (MCL) covering 210Po was promulgated in December 2000, very little was known about its occurrence and the processes responsible for mobilizing it. More is now known about the processes that mobilize 210Po from sediments and a review of recent occurrence data show that it may not be as rare in the US as the US Environmental Protection Agency (USEPA) thought in 2000. Worldwide, only about 2200 analyses for 210Po in drinking water were identified, with activities exceeding 500mBq/L being found only in Finland, India, Sweden, and the US. The median of 400 210Po analyses from the US is 4.75mBq/L and >10% of the samples exceed 500mBq/L. Current compliance-monitoring regulations in the US essentially guarantee that210Po contamination will not be detected except in very contaminated wells. Major problems with the US Gross Alpha Activity MCL include the volatility of 210Po and extended holding times and sample-compositing methods that can allow the majority of 210Po in a sample bottle to decay before analysis. In light of new information, the radionuclide rule should be changed and direct measurements of210Po should be made in all public-water supply wells to rule out its presence. Much of the important biological and toxicological research on 210Po is more than four decades old and new laboratory research using modern tools is needed. Biological and epidemiological investigations of known contaminated areas are needed to assess the effect 210Po exposure is having on animals and humans consuming the water.

Uranium and Thorium in Drinking Water, Rajasthan, India

Duggal V, Rani A, Balaram V. ASSESSMENT OF AGE-DEPENDENT RADIATION DOSE DUE TO INTAKE OF URANIUM AND THORIUM IN DRINKING WATER FROM SIKAR DISTRICT, RAJASTHAN, INDIA. Radiation Protection Dosimetry. 2016 Mar 30. pii: ncw070.

The concentrations of238U and232Th have been determined in drinking water samples collected from the Sikar district of Rajasthan State, India. The samples have been analysed by using high-resolution inductively coupled plasma mass spectrometry.238U content in water samples ranged from 8.20 to 202.63 µg l-1and232Th content ranged from 0.57 to 1.46 µg l-1 The measured238U content in 25 % of the analysed samples exceeded the World Health Organization (WHO) and United States Environmental Protection Agency drinking water guidelines of 30 µg l-1and 12.5 % of the samples exceeded the 60 µg l-1Indian maximum acceptable concentration recommended by the Atomic Energy Regulatory Board, India. The annual effective doses (µSv y-1) due to ingestion of238U and232Th for different age groups were also calculated. The results compared with the recommended value reported by the WHO.