Tag Archives: sea ice

“climate emergency” writers aren’t paying attention to climate science

“Experts describe this very slow melt in August as a “climate emergency” and say we “aren’t paying attention.”  ” click here

Glacial calving is a natural phenomena; Greenland glaciers are growing

Arctic temperatures are cyclical, steady

“Despite endless hysterics based on cherry-picking a few warm days somewhere in the Arctic, there is nothing happening there.  The MASIE record extends back to 2006, and every day in their record is shown in the graph below. The graph shows annual cycles with no trend.” click here

Arctic ice melting claims are simply false

Antarctic sea ice declining — cause unknown

Claire L. Parkinson. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic, Proc Natl Acad Sci, https://doi.org/10.1073/pnas.1906556116

A newly completed 40-y record of satellite observations is used to quantify changes in Antarctic sea ice coverage since the late 1970s. Sea ice spreads over vast areas and has major impacts on the rest of the climate system, reflecting solar radiation and restricting ocean/atmosphere exchanges. The satellite record reveals that a gradual, decades-long overall increase in Antarctic sea ice extents reversed in 2014, with subsequent rates of decrease in 2014–2017 far exceeding the more widely publicized decay rates experienced in the Arctic. The rapid decreases reduced the Antarctic sea ice extents to their lowest values in the 40-y record, both on a yearly average basis (record low in 2017) and on a monthly basis (record low in February 2017).

Geothermal heat flux a significant contributor to Greenland Ice melting

Irina M. Artemieva. Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method. Earth-Science Reviews, Volume 188, January 2019, Pages 469-481. https://doi.org/10.1016/j.earscirev.2018.10.015

Lithosphere thermal structure in Greenland is poorly known and models based on seismic and magnetic data are inconsistent, while growing awareness in the fate of the ice sheet in Greenland requires reliable constraints on geothermal heat flux (GHF) from the Earth’s interior in the region where conventional heat flux measurements are nearly absent. The lithosphere structure of Greenland remains controversial, while its geological evolution is constrained by direct observations in the narrow ice-free zone along the coasts. The effect of the Iceland hotspot on the lithosphere structure is also debated.

Here I describe a new thermal isostasy method which I use to calculate upper mantle temperature anomalies, lithosphere thickness, and GHF in Greenland from seismic data on the Moho depth, topography and ice thickness. To verify the model results, the predicted GHF values are compared to available measurements and show a good agreement. Thick (200–270 km) cratonic lithosphere of SW Greenland with GHF of ca. 40 mW/m2 thins to 180–190 km towards central Greenland without a clear boundary between the Archean and Proterozoic blocks, and the deepest lithosphere keel is observed beneath the largest kimberlite province in West Greenland. The NW-SE belt with an anomalously thin (100–120 km) lithosphere and GHF of 60–70 mW/m2 crosses north-central Greenland from coast to coast and it may mark the Iceland hotspot track. In East Greenland this anomalous belt merges with a strong GHF anomaly of >100 mW/m2 in the Fjordland region. The anomaly is associated with a strong lithosphere thinning, possibly to the Moho, that requires advective heat transfer such as above active magma chambers, which would accelerate ice basal melting. The anomaly may extend 500 km inland with possibly a significant contribution of ice melt to the ice-drainage system of Greenland.

Additional papers here.

Growing glacier disproves Washington Post article “climate change” claim