Tag Archives: taste and odor

Taste Detection and Acceptability for Chlorine Residual, Bangladesh

Crider Y, Sultana S, Unicomb L, Davis J, Luby SP, Pickering AJ. Can you taste it? Taste detection and acceptability thresholds for chlorine residual in drinking water in Dhaka, Bangladesh. The Science of the total environment. 2017 Sep 20;613-614:840-846. doi: 10.1016/j.scitotenv.2017.09.135.

Chlorination is a low-cost, effective method for drinking water treatment, but aversion to the taste or smell of chlorinated water can limit use of chlorine treatment products. Forced choice triangle tests were used to evaluate chlorine detection and acceptability thresholds for two common types of chlorine among adults in Dhaka, Bangladesh, where previous studies have found low sustained uptake of chlorine water treatment products. The median detection threshold was 0.70 mg/L (n=25, SD=0.57) for water dosed with liquid sodium hypochlorite (NaOCl) and 0.73mg/L (n=25, SD=0.83) for water dosed with solid sodium dichloroisocyanurate (NaDCC). Median acceptability thresholds (based on user report) were 1.16 mg/L (SD=0.70) for NaOCl and 1.26mg/L (SD=0.67) for NaDCC. There was no significant difference in detection or acceptability thresholds for dosing with NaOCl versus NaDCC. Although users are willing to accept treated water in which they can detect the taste of chlorine, their acceptability limit is well below the 2.0mg/L that chlorine water treatment products are often designed to dose. For some settings, reducing dose may increase adoption of chlorinated water while still providing effective disinfection.

Chloroanisole Formation During Drinking Water Chlorination

Zhang K, Zhou X, Zhang, Mao M, Li L, Liao W. Kinetics and mechanisms of formation of earthy and musty odor compounds: Chloroanisoles during water chlorination. Chemosphere. 2016 Aug 22;163:366-372. doi: 10.1016/j.chemosphere.2016.08.051.

Chloroanisoles are often reported as off-flavor compounds which produce an earthy and musty flavors and odors in drinking water. To improve understanding and ultimately minimize the formation of 2,4-dichloroanisole (2,4-DCA), 2,6-dichloroanisole (2,6-DCA) and 2,4,6-trichloroanisole (2,4,6-TCA), which have low odor threshold concentrations (OTC: 0.03-4 ng L-1), a kinetic database for the chlorination of anisole was established by kinetic measurements. The results showed that HOCl reacted with anisole in acidic solution, with the hydrogen ion as an important catalyst. Quantification of product distribution of the produced chloroanisoles demonstrated that a chlorine attack in the para-position was favored over the ortho-position. A kinetic model was formulated, which permitted investigation of the relative importance of the chlorine dose and other water quality parameters including the concentrations of anisole and several metal ions, as well as temperature, on the product distribution of chloroanisoles. In general, high chlorine doses led to low concentrations of intermediates. The presence of ions such as Fe3+ and Al3+ facilitated the formation of chloroanisoles, but Zn2+ and Mn2+ did not. The kinetic model can be applied to optimize water chlorination and minimize earthy and musty odors.

Multi-barrier Treatment Approach Ensures Cyanobacteria and T&O Compound Removal

Zamyadi A, Henderson R, Stuetz R, Hofmann R, Ho L, Newcombe G. Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants. Water research. 2015 Jun 27;83:171-183. doi: 10.1016/j.watres.2015.06.038.

The increasing frequency and intensity of taste and odour (T&O) producing cyanobacteria in water sources is a growing global issue. Geosmin and 2-methylisoborneol (MIB) are the main cyanobacterial T&O compounds and can cause complaints from consumers at levels as low as 10 ng/L. However, literature concerning the performance of full-scale treatment processes for geosmin and MIB removal is rare. Hence, the objectives of this study were to: 1) estimate the accumulation and breakthrough of geosmin and MIB inside full-scale water treatment plants; 2) verify the potential impact of sludge recycling practice on performance of plants; and, 3) assess the effectiveness of aged GAC for the removal of these compounds. Sampling after full-scale treatment processes and GAC pilot assays were conducted to achieve these goals. Geosmin and MIB monitoring in full-scale plants provided the opportunity to rank the performance of studied treatment processes with filtration and granular activated carbon providing the best barriers for removal of total and extracellular compounds, correspondingly. Geosmin was removed to a greater extent than MIB using GAC. Geosmin and MIB residuals in water post GAC contactors after two years of operation was 20% and 40% of initial concentrations, correspondingly. Biological activity on the GAC surface enhanced the removal of T&O compounds. These observations demonstrated that a multi-barrier treatment approach is required to ensure cyanobacteria and their T&O compounds are effectively removed from drinking water.

Martinez (CA) residents face taste and odor problems…

Martinez Reservoir stores water for the City of Martinez. Operated by the Contra Costa Water District (CCWD), the reservoir recently experienced an algae bloom. Algae blooms tend to occur during the warm summer months….causing taste and odor problems…..click here….

Taste and odor hit Arvada, Colorado

Global warmists, of course, blame everything on the weather….but it does not take record heat to cause taste and odor problem in the Arvada reservoir. Click here

‘Tis the season for taste and odor problems….

Summer algal blooms are here and along with them are the typical tap water “earthy” and “musty” tastes and odors……this time in Prosper, Texas….click here….

Now is the season for MIB, Geosmin tastes and odors

MIB and Geosmin are algal metabolites that are formed by blue-green algae in water supply reservoirs. They typically cause earthy-musty tastes and odors in drinking water…..such as in Lawrence, Kansas….click here….