Tag Archives: toxicity

Toxic effects of fluoride on organisms

Zuo H, Chen L, Kong M, Qiu L, Lü P, Wu P, Chen K. Toxic effects of fluoride on organisms. Life sciences. 2018 Apr 1;198:18-24. doi: 10.1016/j.lfs.2018.02.001.

Accumulation of excess fluoride in the environment poses serious health risks to plants, animals, and humans. This endangers human health, affects organism growth and development, and negatively impacts the food chain, thereby affecting ecological balance. In recent years, numerous studies focused on the molecular mechanisms associated with fluoride toxicity. These studies have demonstrated that fluoride can induce oxidative stress, regulate intracellular redox homeostasis, and lead to mitochondrial damage, endoplasmic reticulum stress and alter gene expression. This paper reviews the present research on the potential adverse effects of overdose fluoride on various organisms and aims to improve our understanding of fluoride toxicity.

Fluoride toxicity alters liver enzyme activity

Perera T, Ranasinghe S, Alles N, Waduge R. Effect of fluoride on major organs with the different time of exposure in rats. Environmental health and preventive medicine. 2018 May 16;23(1):17. doi: 10.1186/s12199-018-0707-2.

BACKGROUND: High fluoride levels in drinking water in relation to the prevalence of chronic kidney disease of unknown etiology (CKDu) in Sri Lanka were investigated using rats as an experimental model.

METHOD: The effects of fluoride after oral administration of Sodium fluoride (NaF) at levels of 0, 0.5, 5 and 20 ppm F were evaluated in adult male Wistar rats. Thirty-six rats were randomly divided into 4 groups (n = 9), namely, control, test I, II, and III. Control group was given daily 1 ml/rat of distilled water and test groups I, II, and III were treated 1 ml/rat of NaF doses of 0.5, 5, and 20 ppm, respectively, by using a stomach tube. Three rats from the control group and each experimental group were sacrificed after 15, 30, and 60 days following treatment. Serological and histopathological investigations were carried out using blood, kidney, and liver.

RESULTS: No significant differences were observed in body weight gain and relative organ weights of the liver and kidney in fluoride-treated groups compared to control group. After 60 days of fluoride administration, group I showed a mild portal inflammation with lytic necrosis while multiple areas of focal necrosis and various degrees of portal inflammation were observed in groups II and III. This was further confirmed by increased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) activities. As compared with control and other treated groups, group III showed a significantly higher serum AST activity (p < 0.05) and ALT activity (p < 0.05) after 60 days and ALP activity with a significant difference (p < 0.05) after 15, 30, and 60 days. The renal histological analysis showed normal histological features in all groups with the elevated serum creatinine levels in group III compared to those in the groups I and II (p < 0.05) after 60 days. Significantly elevated serum fluoride levels were observed in group II of 30 and 60 days and group III after 15, 30, and 60 days with respective to control groups (p < 0.05).

CONCLUSION: Taken together, these findings indicate that there can be some alterations in liver enzyme activities at early stages of fluoride intoxication followed by renal damage.

Does early fluoride exposure result in disease later in life?

Nakamoto T, Rawls HR. Fluoride Exposure in Early Life as the Possible Root Cause of Disease In Later Life. The Journal of clinical pediatric dentistry. 2018 May 15. doi: 10.17796/1053-4625-42.5.1.

Fluoride, one of the most celebrated ingredients for the prevention of dental caries in the 20th century, has also been controversial for its use in dentifrices and other applications. In the current review, we have concentrated primarily on early-life exposure to fluoride and how it may affect the various organs. The most recent controversial aspects of fluoride are related to toxicity of the developing brain and how it may possibly result in the decrease of intelligence quotient (IQ), autism, and calcification of the pineal gland. In addition, it has been reported to have possible effects on bone and thyroid glands. If nutritional stress is applied during a critical period of growth and development, the organ(s) and/or body will never recover once they pass through the critical period. For example, if animals are force-fed during experiments, they will simply get fat but never reach the normal size. Although early-life fluoride exposure causing fluorosis is well reported in the literature, the dental profession considers it primarily as an esthetic rather than a serious systemic problem. In the current review, we wanted to raise the possibility of future disease as a result of early-life exposure to fluoride. It is not currently known how fluoride will become a cause of future disease. Studies of other nutritional factors have shown that the effects of early nutritional stress are a cause of disease in later life.

Fluoride toxicity associated with chronic kidney disease

Sayanthooran S, Gunerathne L, Abeysekera TDJ, Magana-Arachchi DN. Transcriptome analysis supports viral infection and fluoride toxicity as contributors to chronic kidney disease of unknown etiology (CKDu) in Sri Lanka. International urology and nephrology. 2018 May 28. doi: 10.1007/s11255-018-1892-z.

PURPOSE: Chronic kidney disease of unknown etiology (CKDu), having epidemic characteristics, is being diagnosed increasingly in certain tropical regions of the world, mainly Latin America and Sri Lanka. They have been observed primarily in farming communities and current hypotheses point toward many environmental and occupational triggers. CKDu does not have common etiologies of chronic kidney disease (CKD) such as hypertension, diabetes, or autoimmune disease. We aimed to understand the molecular processes underlying CKDu in Sri Lanka using transcriptome analysis.

METHODS: RNA extracted from whole blood was reverse transcribed and used for microarray analysis using the Human HT-12 v.4 array (Illumina). Pathway analysis was carried out using ingenuity pathway analysis (IPA-Qiagen). Microarray results were validated using real-time PCR of five selected genes.

RESULTS: Pathways related to innate immune response, including interferon signaling, inflammasome signaling and TREM1 signaling had the most significant positive activation z scores, where as EIF2 signaling and mTOR signaling had the most significant negative activation z scores. Pathways previously linked to fluoride toxicity; G-protein activation, Cdc42 signaling, Rac signaling and RhoA signaling were activated in CKDu patients. The most significantly activated biological functions were cell death, cell movement and antimicrobial response. Significant toxicological functions were mitochondrial dysfunction, oxidative stress and apoptosis.

CONCLUSIONS: Based on the molecular pathway analysis in CKDu patients and review of literature, viral infections and fluoride toxicity appear to be contributing to the molecular mechanisms underlying CKDu.

Fluoride Induces Apoptosis in Cardiomyocytes

Yan X, Wang L, Yang X, Qiu Y, Tian X, Lv Y, Tian F, Song G, Wang T. Fluoride induces apoptosis in H9c2 cardiomyocytes via the mitochondrial pathway. Chemosphere. 2017 Sep;182:159-165. doi: 10.1016/j.chemosphere.2017.05.002. Epub 2017 May 1.

Numerous studies have shown that chronic excessive fluoride intake can adversely affect different organ systems. In particular, the cardiovascular system is susceptible to disruption by a high concentration of fluoride. The objectives of this study were to explore the mechanism of apoptosis by detecting the toxic effects of different concentrations of sodium fluoride (NaF) in H9c2 cells exposed for up to 96 h. NaF not only inhibited H9c2 cell proliferation but also induced apoptosis and morphological damage. With increasing NaF concentrations, early apoptosis of H9c2 cells was increased while the mitochondrial membrane potential was decreased. Compared with the control group, the mRNA levels of caspase-3, caspase-9, and cytochrome c all increased with increasing concentrations of NaF. In summary, these data suggest that apoptosis is involved in NaF-induced H9c2 cell toxicity and that activation of the mitochondrial pathway may occur.

Validation Need for QSAR DBP Toxicity Models

Qin L, Zhang X, Chen Y, Mo L, Zeng H, Liang Y. Predictive QSAR Models for the Toxicity of Disinfection Byproducts. Molecules 2017 Oct 9;22(10). pii: E1671. doi: 10.3390/molecules22101671

Several hundred disinfection byproducts (DBPs) in drinking water have been identified, and are known to have potentially adverse health effects. There are toxicological data gaps for most DBPs, and the predictive method may provide an effective way to address this. The development of an in-silico model of toxicology endpoints of DBPs is rarely studied. The main aim of the present study is to develop predictive quantitative structure-activity relationship (QSAR) models for the reactive toxicities of 50 DBPs in the five bioassays of X-Microtox, GSH+, GSH-, DNA+ and DNA-. All-subset regression was used to select the optimal descriptors, and multiple linear-regression models were built. The developed QSAR models for five endpoints satisfied the internal and external validation criteria: coefficient of determination (R²) > 0.7, explained variance in leave-one-out prediction (Q²LOO) and in leave-many-out prediction (Q²LMO) > 0.6, variance explained in external prediction (Q²F1Q²F2, and Q²F3) > 0.7, and concordance correlation coefficient (CCC) > 0.85. The application domains and the meaning of the selective descriptors for the QSAR models were discussed. The obtained QSAR models can be used in predicting the toxicities of the 50 DBPs.

Fluoride and Human Lung Cell Toxicity

Ying J, Xu J, Shen L, Mao Z, Liang J, Lin S, Yu X, Pan R, Yan C, Li S, Bao Q, Li P. The Effect of Sodium Fluoride on Cell Apoptosis and the Mechanism of Human Lung BEAS-2B Cells In Vitro. Biological trace element research. 2017 Jan 22. doi: 10.1007/s12011-017-0937-y.

Sodium fluoride (NaF) is a source of fluoride ions used in many applications. Previous studies found that NaF suppressed the proliferation of osteoblast MC3T3 E1 cells and induced the apoptosis of chondrocytes. However, little is known about the effects of NaF on human lung BEAS-2B cells. Therefore, we investigated the mode of cell death induced by NaF and its underlying molecular mechanisms. BEAS-2B cells were treated with NaF at concentrations of 0, 0.25, 0.5, 1.0, 2.0, and 4.0 mmol/L. Cell viability decreased and apoptotic cells significantly increased as concentrations of NaF increased over specific periods of time. The IC50 of NaF was 1.9 and 0.9 mM after 24 and 48 h, respectively. The rates of apoptosis increased from 4.8 to 37.7% after NaF exposure. HE staining, electron microscopy, and single cell gel electrophoresis revealed that morphological changes of apoptosis increased with exposure concentrations. RT-PCR and Western blotting were used to detect the apoptotic pathways. The expressions of bax, caspase-3, caspase-9, p53, and the cytoplasmic CytC of the NaF groups increased, while bcl-2 and mitochondrial CytC decreased compared with that of the control group (P < 0.05). Further, the fluorescence intensities of ROS in the NaF groups were higher than those in the control group, and the membrane potential of mitochondria in the NaF group was significantly lower than that of the control group (P < 0.05). These findings suggested that NaF induced apoptosis in the BEAS-2B cells through mitochondria-mediated signal pathways. Our study provides the theoretical foundation and experimental basis for exploring the mechanisms of human lung epithelial cell damage and cytotoxicity induced by fluorine.